A Heterogeneously Integrated Double-Sided Cooling Silicon Carbide Power Module

Riya Paul, Asif Faruque, Ayesha Hassan, H. Alan Mantooth
Department of Electrical Engineering
University of Arkansas

Sama Salehi Vala, Abdul Basit Mirza, Fang Luo
Department of Electrical and Computer Engineering
Stony Brook University

20th IEEE International NEWCAS Conference
June 19-22, 2022, Québec City, Canada
Outline

- Introduction to double-sided cooling (DSC) power modules and motivation for heterogeneous integration
- Proposed power module design
- Thermal simulation
- Process flow
- SOI based gate driver chip integration
- GMR current sensor integration
- System level integration
- Conclusion
Introduction and Motivation

- **Conventional power module package drawbacks:**
 - Single-side cooling provides less heat removal
 - Vertical power loop not possible
 - Top-side wire bonds increase failure risk

- **DSC power module benefits:**
 - Better heat dissipation capability
 - Low parasitic inductance
 - No wire bond failure risk
State-of-the-Art DSC Power Modules for EV Applications

<table>
<thead>
<tr>
<th>Specification</th>
<th>294 A/1200 V module</th>
<th>-</th>
<th>600 V</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated features</td>
<td>Decoupling capacitors</td>
<td>NTC thermal resistors, integrated heatsink solution</td>
<td>-</td>
<td>On chip current and temperature sensor</td>
</tr>
<tr>
<td>Architecture for double-sided cooling</td>
<td>Copper molybdenum post as spacers</td>
<td>Metal spacers to enable double-sided cooling</td>
<td>Electroplated copper and solder mask to device’s top side</td>
<td>Metal spacer on device top</td>
</tr>
<tr>
<td>L_{power} (nH)</td>
<td>10.6</td>
<td>-</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>R_{th} (K/W)</td>
<td>0.146, Huazhong University, China [23]</td>
<td>0.0899, Power Semiconductor, UK [13]</td>
<td>0.14, University of Maryland, USA [12]</td>
<td>0.11, Infineon Technologies [9]</td>
</tr>
</tbody>
</table>
State-of-the-Art Volumetric System Power Density (PD)

<table>
<thead>
<tr>
<th>Organization</th>
<th>PD (kW/ L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitachi Ltd., Japan [18]</td>
<td>35</td>
</tr>
<tr>
<td>University of Nottingham, UK [19]</td>
<td>30</td>
</tr>
<tr>
<td>Chinese Academy of Sciences, China [20]</td>
<td>14.8</td>
</tr>
<tr>
<td>NCSU, USA [21]</td>
<td>12.1</td>
</tr>
</tbody>
</table>
Proposed DSC Power Module Design

- **Key features:**
 - Pyramidal or 45-degree connection blocks:
 - Maximum heat dissipation path
 - LTCC based interposer:
 - Electrical isolation
 - Mechanical strength
 - Aligning top and bottom substrates

- **Integrated features:**
 - Decoupling capacitors
 - Temperature sensors
 - Current sensor
 - Gate driver boards
Thermal Simulation and Design Specification

- **Software:**
 - SolidWorks Thermal Simulator

- **Contact sets:**
 - Thermal contact resistance modeled:
 - Attachment silver sinter paste (T.C.= 60 W/mK, 50 um)
 - Thermal interface material (T.C.= 9.6 W/mK, 0.5 mm)

- **Boundary conditions:**
 - Convection co-efficient: 10,000 W/m²K

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of paralleled devices</td>
<td>Two</td>
</tr>
<tr>
<td>Key integrated parts</td>
<td>Decoupling capacitors, Temperature sensors, Current sensor, Two gate drivers</td>
</tr>
<tr>
<td>Dimension (mm)</td>
<td>666310</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>1200</td>
</tr>
<tr>
<td>Current (A)</td>
<td>164 @ T<sub>j</sub>=175°C</td>
</tr>
<tr>
<td>Power loop inductance (nH)</td>
<td>1.5</td>
</tr>
<tr>
<td>Junction-to-ambient thermal resistance (K/W)</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Integrated SOI Based Gate Drivers

- XFAB's 180 nm silicon-on-insulator (SOI) CMOS process
- Can safely operate up to 175°C
- System protection features:
 - Active Miller clamping
 - Over-current detection
 - Under-voltage lockout circuits
- Die area is ~ 3.14 mm x 3.14 mm
- Pad area of ~ 100µm x 100µm

- Very low gate loop inductance due to the integrated gate driver
Problem Statement:
- Integration of current measurement method inside power modules:
 - Small and accurate
 - Low or no power loss
 - High bandwidth and capable of measuring both AC and DC currents
 - No saturation problem
 - Low in cost
- GMR sensors
 - Small, accurate and high bandwidth
 - Contactless sensors
 - No power loss

Challenges:
- Sensitivity of GMR sensors to stray magnetic fields and temperature fluctuation

Solution:
- Implementation of Two GMR Sensors (TGS) method [5]
Fabrication Flow

1st sinter on bottom DBC:
Devices, terminals, C_{dec}, connection blocks, temp. sensor

2nd sinter on top DBC:
Devices, terminals, connection blocks, temp. sensor

1st wire-bonding on bottom DBC:
Devices, temp. sensor

2nd wire-bonding on top DBC:
Devices, temp. sensor, current sensor routing to DBC

3rd sinter:
Bottom DBC, interposer, top DBC

1st solder:
Current sensor on AC terminal

2nd solder:
Bottom DBC, interposer, top DBC

1st glue:
Assembly, bottom housing, top switch gate driver board

2nd glue:
Assembly, housing part 2, bottom switch gate driver board

3rd glue:
Housing part 3

3rd wire-bonding:
Device gate-source connections to PCB; Encapsulation

4th wire-bonding:
Device gate-source, temp. and current sensor routing to PCB; Encapsulation
Volumetric System Power Density (PD)

Segmented two-level three-phase inverter with PM traction motor in EV systems [17]

- Better than most state-of-the-art inverter (system) power densities for EV applications

<table>
<thead>
<tr>
<th>Proposed Volumetric System PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed DSC Module System</td>
</tr>
<tr>
<td>System power= 200 kW</td>
</tr>
<tr>
<td>Volume</td>
</tr>
<tr>
<td>188 mm (L) * 102 mm (H) * 77 mm (W)</td>
</tr>
<tr>
<td>Power density</td>
</tr>
<tr>
<td>136 kW/L</td>
</tr>
</tbody>
</table>
Summary and Conclusion

<table>
<thead>
<tr>
<th>Module rating</th>
<th>1.2 kV/ 164 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Configuration</td>
<td>Half- bridge</td>
</tr>
<tr>
<td>Key integrated parts</td>
<td>Two gate driver boards, thermal sensors, decoupling capacitors, current sensor</td>
</tr>
<tr>
<td>L_{power} (nH)</td>
<td>1.5</td>
</tr>
<tr>
<td>$R_{\text{th,j-a}}$ (K/W)</td>
<td>0.06</td>
</tr>
<tr>
<td>System volume (LBH)</td>
<td>188 mm(L) * 102 mm(H)* 77 mm(W) = 1.4 L</td>
</tr>
<tr>
<td>Volumetric system power density (kW/L) for a 200-kW system</td>
<td>136</td>
</tr>
</tbody>
</table>

- Double-sided cooling enabling high current rating
- Highly integrated power module
- Very high system power density
Future Work and Acknowledgment

- Fabrication of the power module
- Test the power module

This material is based upon work supported by the U.S. Department of Energy under Award Number DE-EE0008707.
References

References

Thank you for your attention!

Questions?

For related information, kindly contact:
riyapaul@uark.edu
fang.luo@stonybrook.edu
mantooth@uark.edu