Optimization of Full 3D Hierarchical Cascading Technique for Surface Acoustic Wave Device Simulations

D. Sui$^{1,2,\#}$, S. Zhang$^{1,3,\#,*}$, H. Yao$^{1,2,\#}$, P. Zheng1,2, M. Sun1,2, X. Fang1,2, L. Zhang1,2, J. Wu1,2, X. Ou1,2,*

1Shanghai Institute of Microsystem and Information Technology, Shanghai, China
2University of Chinese Academy of Sciences, Beijing, China
3XOI Technology Co., Ltd, Shanghai, China

*Corresponding authors; \#Authors contributed equally to this work
Outline of Presentation

• Introduction

• Full 3D Hierarchical Cascade

• Time Optimization

• Result and Conclusion
Introduction

The development of hierarchical cascading technique (HCT) has greatly reduced the computational load using the periodicity of SAW devices!!

- More accurate results
- More time and memory cost

- Full 3D HCT
- Full 3D FEM
- Periodic HCT
- Periodic FEM
Introduction

How to efficiently cascade 3D models?
Full 3D Hierarchical Cascade

1. \([K - \omega^2 M + i\omega D](x) = (F)\)

Reorganize

\[
\begin{bmatrix}
A_{EE} & A_{ER} & A_{EV} \\
A_{RE} & A_{RR} & A_{EV} \\
A_{VE} & A_{VR} & A_{VV}
\end{bmatrix}
\begin{bmatrix}
x_E \\
x_S \\
V
\end{bmatrix} =
\begin{bmatrix}
F_E \\
F_S \\
-Q
\end{bmatrix}
\]

Schur (SC)
Complement

2. \([BC][x_S] = (0)\)

3. \([B_{11} B_{12}][x_S] = (0)\)

Splice:

4. \[
\begin{bmatrix}
C_{11-N} & C_{12-N} & C_{13-N} \\
C_{21-N} & C_{22-N} & C_{23-N} \\
C_{31-N} & C_{32-N} & C_{33-N}
\end{bmatrix}
\begin{bmatrix}
x_{S-N} \\
V
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
-Q_N
\end{bmatrix}
\]

5. \[
\begin{bmatrix}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{bmatrix}
\begin{bmatrix}
x_S' \\
V
\end{bmatrix} = (0)
\]

\(x_E\): DOFs to be eliminated
\(x_S\): DOFs to be saved
Full 3D Hierarchical Cascade

Multidirectional cascade:
- Cascade in Z direction
- Cascade in Y direction
- Cascade in X direction

(Take ‘Z→Y→X cascade’ as an example)
Time Optimization

\[n_x = 10 \]
\[n_y = 30 \]
\[DOF_x = 768 \]
\[DOF_y = 168 \]
Time Optimization

\[t_{X\rightarrow Y} = t_{1st\text{-}step} + t_{2nd\text{-}step} \]

\[= \sum_{i=1}^{n_x} \tau_i + \tau_c \times n_y \]

\[t_{Y\rightarrow X} = t_{1st\text{-}step} + t_{2nd\text{-}step} \]

\[= \sum_{i=1}^{n_y} \tau_i + \tau_c \times n_x \]
We put forward the time optimized \('Z\rightarrow Y\rightarrow X' \) cascading method.
Full 3D HCT simulation reveals more details (spurious modes) compared to the other structures!
Thank you for your patience.