On D-ary Fano Codes

- Ferdinando Cicalese, U. Verona
- Eros Rossi, U. Verona
Prefix code construction

\(X \) source or random variable
\(X = \{x_1, ..., x_n\} \) alphabet of \(X \)
\(X \sim p = (p_1, ..., p_n) \)

\(D \)-ary prefix code for \(X \)

\(c : x \in X \mapsto c(x) \in \{0, ..., D - 1\}^* \)

\(s.t \) there is a \(D \)-ary codetree \(T_c \) with \(n \) leaves

- edges out of same vertex are distinctly labelled with code symbols \(\{0, ..., D-1\} \)
- each \(x \) in \(X \) is distinctly mapped to a leaf \(\ell(x) \)
- \(c(x) \) is the sequence spelled on the path to \(\ell(x) \)
Fano code (D-ary)

Construction of the Prefix code as a codetree T

1. Sort $\mathbf{p} : p_1 \geq p_2 \geq ... \geq p_n$
2. Split the prob. vector \mathbf{p} into $\min\{D,n\}$ groups as evenly as possible
3. Recursively apply 2. to build a Fano codetree for each group until groups are sigletons.
4. Label each edge with a codeletter and encode leaves with the labels on the root-to-leaf path

Step 2 (Fano Split)
Determine the goodness of the code
Shannon’s bound and redundancy

• Given \(p = (p_1, ..., p_n) \) and a codetree \(T \) for \(p \)

Average Code Length of \(T \):

\[
L(p) = \sum_{j=1}^{n} h_j p_j
\]

\(h_i \) depth of leaf for \(p_i \)

D-ary Entropy of \(p \):

\[
H_D(p) = \sum_{j=1}^{n} p_j \log_D \frac{1}{p_j}
\]

Shannon classical result

\[
H_D(p) \leq L(p) < H_D(p) + 1
\]
Shannon’s bound and redundancy

- **Given** $p = (p_1, \ldots, p_n)$ and a codetree T for p

 Average Code Length of T:

 $$L(p) = \sum_{j=1}^{n} h_j p_j$$

 h_i depth of leaf for p_i

 D-ary Entropy of p:

 $$H_D(p) = \sum_{j=1}^{n} p_j \log_D \frac{1}{p_j}$$

 Redundancy of an optimal code

 $$L(p) - H_D(p) < 1$$
D-ary Fano code in [Krajči et al. ISIT’15]

Construction of the Prefix code as a codetree T

1. Sort $p : p_1 \geq p_2 \geq ... \geq p_n$

2. Split the prob. vector p into $\min\{D,n\}$ groups as evenly as possible

Conjecture [Krajči et al, ISIT’15]
For each D, a D-ary Fano code (built on Fano split in (*)) achieves
$L(p) - H_D(p) \leq 1 - p_n$

Proved only for $D = 2,3$ [Krajči et al, ISIT’15]

Step 2 (Fano Split) in Krajči et al [ISIT’15]

minimize $\sum_i \sum_j |q_i - q_j|$

q_i is the sum of the i-th group
Our New D-ary Fano code

Construction of the Prefix code as a codetree T

1. Sort $\mathbf{p} : p_1 \geq p_2 \geq ... \geq p_n$

2. Split the prob. vector \mathbf{p} into $\min\{D, n\}$ groups as evenly as possible

Conjecture [Krajči et al, ISIT’15]
For each D, a D-ary Fano code (built on a Fano split in (*)) achieves
$$L(\mathbf{p}) - H_D(\mathbf{p}) \leq 1 - p_n$$

Our two Goals:
1. Improve efficiency of the split
2. Prove the conjecture (for a new Fano split)

Step 2 (Fano Split) in Krajči et al [ISIT’15]

minimize $\sum_i \sum_j |q_i - q_j|$ (*)&

q_i is the sum of the i-th group
Our New D-ary Fano code

Conjecture [Krajči et al, ISIT’15]
For each D, a D-ary Fano code (built on a Fano split in (*)) achieves
\[L(p) - H_D(p) \leq 1 - p_n \]

Our two Goals:
1. Improve efficiency of the split
2. Prove the conjecture (for a new Fano split)

Step 2 *(Our new Fano Split)*

\[\text{maximize } \min_{i=1,...,D} q_i \]

\[\Theta(nD) \]

minimize \[\sum_{i} \sum_{j} |q_i - q_j| \] (*

\(q_i \) is the sum of the \(i \)-th group

Holds for every D
Our Results

In the proceedings article

- A new splitting criterion (Fano Split) based on max-min aggregations
 - computable in $O(nD)$
 - resulting D-ary code tree has redundancy $\leq 1-p_n$
 - for $D = 2, 3, 4$ (without other restrictions)
 - for all $D > 1$, for full trees (nodes have 0 or D children)

New result

- There exists a Fano codetree based on max-min aggregation that has redundancy $\leq 1-p_n$
 - Unconditionally for all $D > 1$
 - Proof based on a conjecture in the proceedings
Max-min aggregations

Given a probability distribution \(p = p_1, ..., p_n \)

A **D-aggregation** \(q \) of \(p \) is the distribution obtained by aggregating contiguously components of \(p \) into \(D \) blocks.

We call \(q_{j,\text{First}} \) and \(q_{j,\text{Last}} \) the first and last component in the \(j \)th block.

A D-aggregation \(q \) is **max-min** if it maximizes the minimum component w.r.t to all D aggregation of \(p \).

\(q \) is **balanced** if, letting \(j^* = \arg\min_j q_j \)

- For \(j < j^* \) \(q_j - q_{j,\text{Last}} \leq q_{j^*} \)
- For \(j > j^* \) \(q_j - q_{j,\text{First}} \leq q_{j^*} \)

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
<th>(p_4)</th>
<th>(p_5)</th>
<th>(p_6)</th>
<th>(p_7)</th>
<th>(p_8)</th>
<th>(p_9)</th>
<th>(p_{10})</th>
<th>(p_{11})</th>
<th>(p_{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1) = (p_1 + p_2)</td>
<td>(q_2) = (p_3 + p_4 + p_5)</td>
<td>(q_3) = (p_6 + p_7 + p_8)</td>
<td>(q_4) = (p_9 + p_{10} + p_{11} + p_{12})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(q_{2,\text{First}} = p_3 \) \(q_{2,\text{Last}} = p_5 \)
Max-min aggregations

Given a probability distribution \(p = p_1, ..., p_n \)

A **D-aggregation** \(q \) of \(p \) is the distribution obtained by aggregating contiguously components of \(p \) into \(D \) blocks.

We call \(q_{j,First} \) and \(q_{j,Last} \) the first and last component in the \(j \)th block.

A D-aggregation \(q \) is **max-min** if it maximizes the minimum component w.r.t to all D aggregation of \(p \)

\(q \) is **balanced** if, letting \(j^* = \arg\min_j q_j \)

- For \(j < j^* \) \(q_j - q_{j,Last} \leq q_{j^*} \)
- For \(j > j^* \) \(q_j - q_{j,First} \leq q_{j^*} \)

Properties

1. A balanced D-aggregation can be computed in \(O(nD) \) [dynamic programming]
 - \(O(nD \log n) \) for a whole balanced codetrees

2. \(1 - H_D(q) \leq \sum_{j=1}^{D-1} q_{j,Last} \)
Our New D-ary Fano code

1. Sort \(p : p_1 \geq p_2 \geq \ldots \geq p_n \)
2. Split the prob. vector \(p \) into \(\min\{D,n\} \) groups as evenly as possible using a balanced max-min \(D \)-aggregation
3. Recursively apply 2. to build a Fano codetree for each group

Theorem:
If in the codetree every node has 0 or \(D \) children, then \(L(p) - H_D(p) \leq 1 - p_n \)

\[
L(p) - H_D(p) = \sum_{\text{node } v} Q_v \left(1 - H_D(q[v]) \right)
\]

\[
\sum_{\text{node } v} \sum_{i=1}^{D-1} q_i^{[v]} \leq 1 - p_n
\]

when all non-leaf \(v \) have \(D \) children or \(D \leq 4 \)
Our New D-ary Fano code

1. Sort \(p : p_1 \geq p_2 \geq \ldots \geq p_n \)
2. Split the prob. vector \(p \) into \(\min\{D,n\} \) groups as evenly as possible using a balanced max-min D-aggregation
3. Recursively apply 2. to build a Fano codetree for each group

Conjecture (in the proceedings):
The contribution to \(H_D(p) \) and \(L(p) \) of \(w \) and its non-full children (like \(v \)) is bounded by

\[
H_D(q[w]) + \sum_{v \text{ child not full}} Q_v H_D(q[w]) \geq \sum_{\text{ith child not full}} q_i[w] + \sum_{\text{ith child is full}} (q_i[w] - q_{i,\text{Last}}) + q_{D,\text{Last}}
\]

\[
Q_w = \sum q_i[w]
\]
Open Problems

• Can we construct balanced max-min aggregations faster
 – greedy approach
 – $O(D \log n)$?
 • codetree construction in $O(nD \log n)$
• what about other Fano splits
 – min-max aggregations?
 – max-entropy aggregations?
Thank You for your attention