Complete Characterization of Optimal LRCs with Minimum Distance 6 and Locality 2: Improved Bounds and Constructions

Weijun Fang

Joint work with Bin Chen, Shu-Tao Xia & Fang-Wei Fu

Shenzhen International Graduate School, Tsinghua University

2020 IEEE International Symposium on Information Theory (ISIT), Jun 21-26, 2020
Outline

1. Introduction
2. Related Work
3. Main Results
 - Complete Characterization
 - New Constructions
 - New Upper Bounds
4. Conclusion Remarks
Outline

1. Introduction
2. Related Work
3. Main Results
 - Complete Characterization
 - New Constructions
 - New Upper Bounds
4. Conclusion Remarks
Distributed Storage System (DSS)

Locally Repairable Codes

Formal Definition: r-locality

The i-th code symbol of C is said to have locality r if there exists a subset $R \subseteq [n]$, such that

- $i \in R$ and $|R| \leq r + 1$;
- $d(C|_R) \geq 2$.

C is called an $(n, k, d; r)$-LRC if each code symbol of C has r-locality.

- Any symbol can be recovered by at most r other symbols
- Large code rate $\frac{r}{n}$, large minimum distance d and small locality r

Theorem (Singleton-type Bounda)

Let C be an $(n, k, d; r)$-LRC. Then

$$d \leq n - k - \left\lceil \frac{k}{r} \right\rceil + 2.$$

- Generalization of the classical Singleton bound ($r = k$);
- C is called an optimal $(n, k, d; r)$ LRC code if it achieves the bound with equality.

Goal: Construction of optimal LRCs
Outline

1. Introduction

2. Related Work

3. Main Results
 - Complete Characterization
 - New Constructions
 - New Upper Bounds

4. Conclusion Remarks
Related Work

Lots of works have been proposed for construction of optimal LRCs.

- \(^{(2)}\) N. Prakash et al. ISIT2012): \(n = \left\lceil \frac{k}{r} \right\rceil (r + \delta - 1) \) for \(n < q \).

- \(^{(3)}\) N. Silberstein et al. ISIT2013): The alphabet size that is exponential in code length.

- \(^{(4)}\) I. Tamo et al. TIT2014): The code length can go up to the alphabet size by using subcodes of Reed-Solomon codes.

Optimal LRCs with length $n=q+1$:

- (L. Jin et al. TIT2019): r-LRCs; via automorphism group of rational function fields.

- (B. Chen et al. TIT2018, TCOM2019): (r, δ)-LRCs; $n \mid q + 1$ via cyclic or constacyclic codes.
Based on the **classical MDS conjecture**, one should wonder if q-ary optimal LRCs can have length bigger than $q + 1$.

- (§X. Li et al. TIT2019): r-LRCs; Length n can be up to $q + 2\sqrt{q}$ via elliptic curves.
- (§Y. Luo et al. TIT2019): r-LRCs; **Unbounded length** with minimum distances 3 and 4 via cyclic codes.

For $d \geq 5$, Guruswami et al.\(^\text{10}\) (TIT2019) have proved that $n = \mathcal{O}(dq^3)$;

- $d = 5, 6, \, r \geq d - 2$: $n = \Omega(q^2)$ (Jin\(^\text{11}\) TIT2019);

- $d \geq 7, \, r \geq d - 2$: Some constructions of optimal LRCs with large length (Xing and Yuan\(^\text{12}\)).

\(^\text{10}\)V. Guruswami, C. Xing, and C. Yuan. “How long can optimal locally repairable codes be?” TIT 2019.

\(^\text{11}\)L. Jin, Explicit construction of optimal locally recoverable codes of distance 5 and 6 via binary constant weight codes, TIT 2019.

Related Work

- $r < d - 2 : (\text{Chen et al}^{13} \text{ ISIT2019})$
 - $d = 5$, $r = 2$: Maximal length $n = q + 1$;
 - $d = 6$, $r = 2$: $n = 3(q + 1)$, q is odd

- **Our Goal**: For $d = 6$ and $r = 2$:
 - Improve the upper bound.
 - New constructions of optimal LRCs with large code length.

Outline

1 Introduction

2 Related Work

3 Main Results
 - Complete Characterization
 - New Constructions
 - New Upper Bounds

4 Conclusion Remarks
Outline

1. Introduction

2. Related Work

3. Main Results
 - Complete Characterization
 - New Constructions
 - New Upper Bounds

4. Conclusion Remarks
- \((r + 1) \mid n, \ell = \frac{n}{r+1}\), LRCs have \(\ell\) disjoint local repair groups.
- The parameters \(n, k, d, r\) are unchanged under the code equivalence.
- \(r = 2\)
- \(i\)-th symbol has \(r\)-locality \(\Leftrightarrow \exists h \in C^\perp\), such that
 - \(i \in \text{supp}(h)\);
 - |\text{supp}(h)| \leq r + 1.
- Parity-check matrix

\[
H = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 1 \\
0 & u_1 & v_1 & 0 & u_2 & v_2 & \ldots & 0 & u_\ell & v_\ell
\end{pmatrix}
\]
Denote $\mathcal{V}_i = \text{Span}\{u_i, v_i\}$ to be a subspace of \mathbb{F}_q^3 spanned by u_i and v_i.

Lemma 1

Suppose $q \geq 3$ and $3 \mid n$. Let C be a q-ary optimal $(n, d = 6; r = 2)$-LRC with a parity-check matrix H. Then

(i) $\dim(\mathcal{V}_i) = 2$;

(ii) for any $j \neq i \in [\ell]$, we have $u_i, v_i, u_i - v_i \notin \mathcal{V}_j$.
Main Results
Complete Characterization

- $[\mathcal{V}_i]_q$: the set of all 1-subspaces of \mathcal{V}_i. Clearly, $|[\mathcal{V}_i]_q| = q + 1$ (Exercise).

Theorem 1 (Complete Characterization of Optimal $(n, d = 6; r = 2)$-LRCs)

Suppose $q \geq 3$ and $3 \mid n$. There exists a q-ary optimal $(n, d = 6; r = 2)$-LRC with disjoint repair groups if and only if there exist ℓ distinct 2-subspaces $\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_\ell$ of \mathbb{F}_q^3 such that for each $i \in [\ell],

$$t_i \triangleq \left| \bigcup_{j \in [\ell], j \neq i} \left([\mathcal{V}_i]_q \cap [\mathcal{V}_j]_q \right) \right| \leq q - 2.$$
Sketch of Proof \Rightarrow: By Lemma 1, $\text{Span}\{u_i\}, \text{Span}\{v_i\}, \text{Span}\{u_i - v_i\}$ are 3 distinct 1-subspaces in $[\mathcal{V}_i]_q$, which do not belong to $[\mathcal{V}_j]_q$ for all $j \neq i$;

\Leftarrow:

- There exist three distinct 1-subspaces $\text{Span}\{u_i\}, \text{Span}\{v_i\}, \text{Span}\{w_i\}$ of \mathcal{V}_i, such that $u_i, v_i, w_i \notin \mathcal{V}_i \bigcap \mathcal{V}_j$ for any $j \in [\ell]$ with $j \neq i$.
- $\dim(\mathcal{V}_i) = 2 \Rightarrow w_i = au_i - bv_i$, for some $a, b \in \mathbb{F}_q^*$.
- By replacing u_i and v_i with au_i and bv_i, respectively, we can assume that $w_i = u_i - v_i$.

Thus for any $j \neq i \in [\ell]$, we have $u_i, v_i, u_i - v_i \notin \mathcal{V}_j$.
Let C be the linear code with parity-check H

$k = n - \text{rank}(H) \geq n - \ell - 3$

$d \geq 6$: Any 5 columns of H are linearly independent

Singleton-type bound $d \leq n - k - \left\lceil \frac{k}{r} \right\rceil + 2 \leq \ell + 3 - (\ell - 1) + 2 = 6$
- $PG(2, q)$: Projective plane over finite field \mathbb{F}_q
- A 2-subspace of \mathbb{F}_q^3 corresponds to a line in $PG(2, q)$ while a 1-subspace of \mathbb{F}_q^3 corresponds to a point in $PG(2, q)$.

Theorem 2 (Geometrical Characterization of Optimal $(n, k, 6; 2)$-LRCs)

Suppose $q \geq 3$ and $3 \mid n$. Then, there exists an optimal $(n, d = 6, r = 2)$-LRC with disjoint repair groups if and only if there exist ℓ distinct lines L_1, L_2, \ldots, L_ℓ in $PG(2, q)$, such that each L_i has at most $q - 2$ distinct intersection points.
Outline

1. Introduction

2. Related Work

3. Main Results
 - Complete Characterization
 - New Constructions
 - New Upper Bounds

4. Conclusion Remarks
Theorem 2 (Sunflower Construction)
Let $q \geq 3$ be a prime power, then there exists an optimal $(3(q + 1), d = 6, r = 2)$-LRC.

We remove the condition of “q is odd” in Chen et al. ISIT2019.
Double-Sunflower Construction

Theorem 3 (Double-Sunflower Construction)

Let \(q \geq 5 \) be a prime power, then there exists a \(q \)-ary optimal \((n = 3(2q - 4), d = 6; r = 2)\)-LRC.
Outline

1. Introduction
2. Related Work
3. Main Results
 - Complete Characterization
 - New Constructions
 - New Upper Bounds
4. Conclusion Remarks
New Upper Bounds

- Known results: \((d = 6, r = 2)\)
 - \(^{14}\) Guruswami et al. : \(n = O(q^3)\);
 - \(^{15}\) Chen et al. : \(n \leq 3 \left\lfloor \frac{q^2 + q + 1}{3} \right\rfloor \).

- \(L_1, L_2, \cdots, L_\ell\) are \(\ell\) lines of \(PG(2, q)\) satisfying the intersection condition.

- **Line-point incidence matrix** $A_{\ell \times (q^2+q+1)}$: the $a_{ij} \neq 0$ if and only if the j-th point lies in L_i;
- Each row has weight $q + 1$: each line has $q + 1$ points.

$$
A =
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 1 \\
\end{pmatrix}
$$

3ℓ columns
Lemma 2

Suppose $q \geq 3$. If there exist ℓ distinct lines L_1, L_2, \ldots, L_ℓ in $PG(2, q)$ satisfying the intersection condition which do not form a Sunflower, then

$$\ell \leq \left\lfloor \frac{q^2 + q + 1}{4} \right\rfloor.$$

Proof:

- Each column of A' has Hamming weight at most $q - 2$

Calculating the number of 1’s in A' in two ways, we obtain that

$$\ell \times (q - 2) \leq (q^2 + q + 1 - 3\ell) \times (q - 2), \text{ i.e., } \ell \leq \left\lfloor \frac{q^2 + q + 1}{4} \right\rfloor.$$
Theorem 4 (First New Upper Bound)

Suppose $q \geq 3$ and let C be a q-ary optimal $(n, k, 6; 2)$-LRC with disjoint local repair groups, then

$$n \leq \max \left\{ 3(q + 1), 3 \left\lfloor \frac{q^2 + q + 1}{4} \right\rfloor \right\}.$$

- $3 \left\lfloor \frac{q^2 + q + 1}{4} \right\rfloor$ is better than $3 \left\lfloor \frac{q^2 + q + 1}{3} \right\rfloor$.
- $n_{\text{max}}(q)$: largest n such that there exists a q-ary optimal $(n, d = 6; r = 2)$-LRC with disjoint local repair groups
Theorem 5
The maximal code length of 4-ary optimal LRCs with $d = 6$ and $r = 2$: $n_{\text{max}}(4) = 15$;

Proof:
- From the Sunflower Construction, $n_{\text{max}}(4) \geq 15$;
- By Theorem 4, $n_{\text{max}}(4) \leq 15$.
Binary constant weight code: A binary (n, M, d, w) constant weight code is a set of binary vectors of length n with size M, such that each codeword contains w 1’s, and any two codewords differ in at least d positions.

Lemma 3 (Johnson Bound)

Let C be a binary $(n, M, d = 2\delta; w)$-constant weight code, then

$$M(w^2 - wn + \delta n) \leq \delta n.$$
Theorem 6 (New Upper Bound)

Suppose \(q \geq 4 \) and let \(C \) be a \(q \)-ary optimal \((n, k, 6; 2)\)-LRC with disjoint repair groups, then

\[
 n \leq 3 \left\lfloor \frac{q + 3 + q\sqrt{3q - 5}}{3} \right\rfloor = O(q^{1.5}).
\]

- Until now, **best bound** on the code length of optimal \((n, k, 6; 2)\)-LRCs
Main Results

New Upper Bounds

\[A = \begin{pmatrix}
A' \\
1 1 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 1
\end{pmatrix}
\]

Proof:

- Any two lines in \(PG(2, q) \) intersect at exactly one point \(\Rightarrow \) the Hamming distance of any two distinct rows of \(A' \) is equal to \(2(q - 2) - 2 = 2q - 6 \)
- \(C' \): binary code whose codewords are the row vectors of \(A' \)
- \(C' \) is exactly a binary \((n, M, d; w)\)-constant weight code with \(n = q^2 + q + 1 - 3\ell, M = \ell, d = 2q - 6 \) and \(w = q - 2 \)

Johnson bound \(\Rightarrow \ell(3\ell - 5q + 3) \leq (q^2 + q + 1 - 3\ell)(q - 3) \Rightarrow 3\ell^2 - (2q + 6)\ell - (q^2 + q + 1)(q - 3) \leq 0 \Rightarrow \ell \leq \left\lfloor \frac{q + 3 + q\sqrt{3q - 5}}{3} \right\rfloor \).
Theorem 7

The maximal code length of 5-ary optimal LRCs with $d = 6$ and $r = 2$: $n_{\text{max}}(5) = 18$.

Proof:

- By Sunflower Construction or Double-Sunflower Construction, $n_{\text{max}}(5) \geq 18$;
- By Theorem 6, $n_{\text{max}}(5) \leq 21$;
- When $n_{\text{max}}(5) = 21$, the lines form an Fano plane over \mathbb{F}_5, which is impossible.
Outline

1 Introduction

2 Related Work

3 Main Results
 - Complete Characterization
 - New Constructions
 - New Upper Bounds

4 Conclusion Remarks
Main Contribution:
- We have established a complete characterization for optimal LRCs with \(d = 6 \) and \(r = 2 \) via the point of view of geometry;
- New construction of optimal LRCs with large length \(n = 3(2q-4) \);
- New upper bound: \(n = O(q^{1.5}) \).

Research Problems and Future Work:
- Construct optimal LRCs with \(n \approx q^{1.5} \) or prove that \(n = O(q) \);
- How about \(d = 6, r = 3? \ d \geq 7? \ldots \);
- Generalize to \((r, \delta)\)-LRCs.
- \ldots\
Thank You!