

An Independent Dynamic Dead-Time Control for Reliable High-Voltage High-Frequency Half-Bridge Converters

Mousa Karimi¹, Mohamed Ali², Ahmad Hassan², Mohamad Sawan^{2,3}, Benoit Gosselin¹

¹BioML-UL Lab., Dept. of Electrical and Computer Engineering, Laval University, Quebec City, QC, Canada ²Polystim Neurotech. Lab., Dept. of Electrical Engineering, Polytechnique Montreal, QC, Canada ³CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou 310024, China

International Symposium on Integrated Circuits and Systems, September 2-4, 2021

Presentation ID: 254

Outline

- > Introduction
- Proposed dead-time circuit
- Circuit implementation
- Measured performance
- ➤ Validation with half-bridge circuit
- ➤ Power loss analysis
- **Conclusion**

Introduction

- ➤ Different applications, require various types of power converters.
- > DC–DC boost/buck converters, class-D power amplifiers, half-bridge converters.
- > Applications: automation, wireless power transmission, and neural stimulations.
- > Switching losses, conduction and gate charge losses; affect efficiency of power converter.
- > Drawbacks, attributed to the parasitic inductances and capacitances of power switches.
- \triangleright Accelerate the charge/discharge of C_{iss} , C_{oss} , mitigate switching and gate charge losses.

Introduction

- ➤ (a): Half-bridge convertor, dead-time part, gate driver, HSPS, LSPS.
- (b): One of complementary switches, turned on before the other switch turned off.
- ➤ (b): Shoot-through current, flow from the supply to the ground during the overlap time.
- (c) Shoot-through may also result from ringing in the driving circuit.
- (d) Formation of Miller capacitance at the gate of the low-side complementary switch.
- \triangleright This condition results in the V_{GS} of the switches to exceed V_{TH} .

Proposed dead-time circuit

- Conventional dead-time circuits, cross-connected logic gates, generates p-second delays
- ➤ High voltage power converters, required longer delays, range of nano-second.
- ➤ Proposed dead-time circuit: TS-WSCS, 2 capacitors, three switches, two Schmitt trigger.
- ➤ Nanosecond delays, generate, mitigates shoot-through at the same time.
- Overall power losses in power converters, decrease.

Proposed dead-time circuit

- > Predefined state machine, reflects the originality.
- > States in the finite machine, "CP", "CS", "CC", and "ST".
- ➤ Process "A" and "B", time required, completely deactivate one power switch before the activation of the complimentary power switch.
- \triangleright Timing diagram, includes four curves tagged by t_{d1} , t_{d2} and the different working states.

Circuit implementation

- > Transistor-level implementation of the proposed dead-time circuit.
- ➤ Provide high-side and low-side delays of 35-ns and 62-ns to such a half-bridge converter.
- \triangleright TS-WSCS supplies the charging current of capacitors C_1 and C_2 .
- \triangleright Diode connected transistors, current sources for respectively generating I_{in} and I_{bias} .
- \triangleright Ramp signal, generated using the timing elements MN3-MN8, C_1 - C_2 , Φ_1 - Φ_2 .
- Schmitt triggers, reshape the ramp to a non-overlapping signals, Ph1 and Ph2.

Circuit implementation

- \triangleright Post-layout simulation; Ph1, Ph2, the ramp signal across capacitors (C₁ and C₂).
- > Generated delays between the Ph1 and Ph2, rely mainly on the slope of the ramp signals.
- \triangleright Capacitance of C_2 , relatively large, the slope of the ramp signals, slow.
- \triangleright Upper bound, ST on the corresponding side of C₂ meets the ramp signals later, t_{d2}>t_{d1}.

Measured performance

- > The micrograph of the integrated chip prototype.
- > The measured non-overlapping signals produced by the dead-time circuit prototype.
- > Reached a good agreement between the experimental results and the projected timing dia.
- \triangleright Four operating states, CP, CS, CC, ST, t_{d1} , t_{d2} .

Measured performance

- > Comparison of the experimental and post-layout simulation results.
- \triangleright Dead-time delays variation versus the power supply voltage V_{DD} .
- \triangleright An increase in the V_{DD} causes a decrease in the generated dead-time.
- \triangleright Effect of V_{DD} on the maximum operating frequency of dead-time circuit.

Validation with half-bridge circuit

- ➤ Validated the dead-time prototype by implementing a half-bridge c ircuit with commercial components.
- ➤ Shown the basic operations of the half-bridge circuit with inconve nient and convenient dead-time, parts (a) and (b), respectively.
- ➤ Highlighted the dead-time dependent losses (A, B, C, D, E, and F).

`▲ Conduction

Validation with half-bridge circuit

- > Experimental setup for characterizing the implemented half-bridge with the dead-time circuit.
- ➤ Size of the custom PCB used to characterize the half-bridge: 2.54 cm×3 cm.
- \triangleright Size of power switches (5A, 200V): 1.7 mm \times 0.9 mm.

Power loss analysis

- \triangleright Measured waveforms of the half-bridge with dead-time circuit, V_{IN} =45V, load: 100Ω , L=150 μ H.
- ➤ Dead-time dependent losses decrease significantly.
- > P_{loss}=404.11mW without proposed dead-time circuit.
- $ightharpoonup P_{loss} = 663.558 \text{mW}$ with proposed dead-time circuit.
- $T_{1a} = 404.11 \text{ mW} \times 85^{\circ}\text{C/W} + 85^{\circ}\text{C} = 119.3^{\circ}\text{C}.$
- $T_{Jb} = 663.558 \text{mW} \times 85^{\circ} \text{C/W} + 85^{\circ} \text{C} = 141.4^{\circ} \text{C}.$

Power Loss Distribution of Half-bridge

Conclusion

- Switching frequency (f_p) , dead-time delay (t_d) , output current (I_O) , input voltage (V_{IN}) ,
- \triangleright Technology (Tech.), total loss improvement (ΔP_{loss}), and efficiency.
- Compared with the reported measurement results of other solutions.
- > Dead-time circuit; produce relatively long and indep. time delays for power converters.
- Implemented circuit improves the dead-time dependent converter losses by 40%.

	[42]	[48]	[51]	[52]	This work
Results	Meas.	Meas.	Meas.	Meas.	Meas.
Tech.(nm)	180	65	350	350	350
$f_p(MHz)$	10	10	10	0.1	1
t _d (ns)	0.125	1	Analog	200	35 and 62
$I_{O}(mA)$	200	120	600	500	210
$V_{IN}(V)$	12	5	3.6	250	45
ΔP_{loss} (%)	30.5		ORGINA.		32
Effic.	81.2%	76.4%	1	77%@20W	82%

Question

An Independent Dynamic Dead-Time Control for Reliable High-Voltage High-Frequency Half-Bridge Converters