An Impedance Measurement SoC with Highly Digital Magnitude and Phase-to-Digital Converter

Rameesha Qaiser, Muhammad Rizwan Khan, and Wala Saadeh
Department of Electrical Engineering
Lahore University of Management and Sciences (LUMS)

2021 IEEE International Symposium on Circuits and Systems
May 22-28, 2021 Virtual & Hybrid Conference
Electrochemical Impedance Spectroscopy (EIS)

- EIS is an electrochemical techniques:
 - Measure the impedance of a system in dependence of the AC potentials frequency

- EIS is the response of an electrochemical system to an applied potential
 - The frequency dependence can reveal underlying chemical processes
 - Exploits variations that arise during bio-recognition events (R & C)

- EIS is formed by injecting a small sinusoidal stimulus voltage (current)
 - Adjustable frequency (several mHz to several kHz)
 - Measuring the output current (or voltage)
 - Amplitude and/or phase difference are related to the bio-recognition events

EIS Applications

- Biosensors have substantial potential for wearable applications:
 - Portability
 - Speed
 - High specificity
 - Low cost
 - Low power requirements

- Applications
 - Point-of-care (PoC) diagnostics
 - In-vitro molecular analysis
 - Cancer research
 - Water quality monitoring
 - Food processing.
 - Analysis of biofluids, such as saliva, sweat, tears, and interstitial fluid

Conventional EIS

- Frequency Response Analysis (FRA)
 - 😊 Measure real and imaginary parts of the complex impedance
 - 😊 Most of the unwanted noise can be removed via intensive analog filtering
 - ☹ Requires lock in amplifiers
 - ☹ Synchronization errors create phase offsets

Proposed EIS System

- This proposed EIS system composes:
 a. Sine Wave Synthesizer (SWS)
 b. Magnitude Detection Module (MDM)
 c. Phase Detection Module (PDM)

- The magnitude & phase of the impedance of the sample are measured:
 - Spectrum of input frequencies ranging from 579 µHz to 48.9 kHz

Sine Wave Synthesizer (SWS)

- SWS on-chip that comprises three components:
 1. Voltage-controlled square wave generator
 2. Clock divider
 3. Tunable low-pass filter (LPF).

Voltage-Controlled Square-Wave Generator

- EN is a control signal to allow larger capacitors
 - Connecting C_{11} with C_{12}, and C_{21} with C_{22} when set to high.
 - The frequency of the square wave determines the switching frequency of this SC-LPF.
Proposed SC-LPF

- Fifth-order Chebyshev type-I filter \rightarrow significant attenuation at higher frequencies
- Differential amplifier (DA) \rightarrow two-stage opamp (gain, & bandwidth) of (35 dB & 12.5MHz)

\[
\text{LPF Transfer Functions Examples}
\]

Output sine wave: 10Hz (LOW Frequency)

\[
H(s) = \frac{1.581 \times 10^8}{s^5 + 93.63 s^4 + 1.169 e4 s^3 + 5.881 e5 s^2 + 2.659 e7 s + 4.743 e8}
\]

Output sine wave: 100Hz (MEDIUM Frequency)

\[
H(s) = \frac{1.581 \times 10^{13}}{s^5 + 936.3 s^4 + 1.169 e6 s^3 + 5.881 e8 s^2 + 2.659 e11 s + 4.743 e13}
\]

Output sine wave: 10kHz (HIGH Frequency)

\[
H(s) = \frac{1.581 \times 10^{23}}{s^5 + 9.363 e04 s^4 + 1.169 e10 s^3 + 5.881 e14 s^2 + 2.659 e19 s + 4.743 e23}
\]
Magnitude Detection Module (MDM)

- MDM is composed of:
 - A charging capacitor $C_m \rightarrow$ charged from the current source I_{CH}
 - Digital control unit \rightarrow correct switching
 - Comparator & a 10-bit counter \rightarrow digital output
Phase Detection Module (PDM)

- Measure the phase difference between the Input signal V_{REF} and the response signal V_{IN}

PHASE DETECTION BLOCK

\[y = 5.67781 \times 0.50608 \]

\[R^2 = 0.99999 \]
Measurement Results

- The EIS measurement SoC was implemented using the TSMC 0.18 μm

- An active area of 0.35 mm²

- The proposed system consumes:
 - 175 μW for the sine generation
 - 93 μW for the MDM
 - 117 μW for the PDM

- This reduces the power consumption by:
 - 38% and 31%, for MDM and PDM [4].

Measurement Results (SWS)

- SWS output spectra measured by the network/spectrum analyzer, PicoScope 5444D at various input frequencies.
- Frequencies of 100 Hz and 10 kHz, respectively, with THD of <0.2%.
- THD is computed by including five harmonic terms.

100 Hz
- SFDR = 57.9 dB
- FFT points = 1024

10 kHz
- SFDR = 62.5 dB
- FFT points = 4096
Nyquist plot for TNF-α detection at different concentrations

- Finding tumor necrosis factor α (TNF-α) at different concentrations:
 (266 pg/mL to 666 ng/mL)
- Using a sine wave of frequency 1-10 kHz.
- There is a rise in polarization resistance with growing steps
- Starting from:
 • Bare gold
 • Gold-coated with CMA
 • Anti-TNF-α antibody to cytokines
- Growing cytokine concentrations
 • (13 ng/mL and 666 ng/mL)

Comparison with the state-of-the-art work

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology (µm)</td>
<td>0.13</td>
<td>0.35</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Supply (V)</td>
<td>0.9</td>
<td>3.3</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Power (µW)</td>
<td>0.386</td>
<td>0.32</td>
<td>0.197</td>
<td>0.38</td>
</tr>
<tr>
<td>SWS f_{sin}</td>
<td>3.9-7.1 kHz</td>
<td>0.1m-100kHz</td>
<td>5k-1MHz</td>
<td>0.579m-48.9kHz</td>
</tr>
<tr>
<td>Magnitude Error</td>
<td>-</td>
<td>0.28%</td>
<td>-</td>
<td>0.19%</td>
</tr>
<tr>
<td>Phase Error</td>
<td>-</td>
<td>0.12%</td>
<td>0.04%</td>
<td>0.08%</td>
</tr>
</tbody>
</table>

Conclusion

- A highly digital EIS SoC utilizing:
 - 10-bit impedance magnitude-and-phase-to-digital converters
 - Integrates a wide-range filter-based programmable SWS
 - The proposed EIS system was fabricated using a 180nm process
 - An area of only 0.35 mm2

- The SWS produces output frequency in the range of 579 µHz–48.9 kHz
 - THD of 0.152% at 100 Hz and 0.116% at 10 kHz

- The proposed system consumes 175 µW for the sine generation, 93 µW, and 117 µW for the MDM and PDM, respectively.