

SPONSORS AND ORGANIZERS



THE INERTIAL TESTING LAB (ITL) PHOENIX, AZ

- NEW! 18.000 DEG/SEC SINGLE AXIS RATE TABLE. ~3000 G'S OF ACCELERATION
- HIGH PERFORMANCE 3-AXIS RATE TABLE WITH THERMAL CHAMBER
- LINEAR VIBRATION SHAKER
- TURNKEY TEST SOLUTIONS

BIAS OVER TEMPERATURE SCALE FACTOR ERROR MISALIGNMENT

BIAS G-SENSITIVITY VIBRATION RECTIFICATION OTHER TESTS AVAILABLE

X X ×

Table of Contents

Welcome Message	5
2023 Organizing Committee	7
Technical Program Committee	8
Technical Reviewers	9
Patrons	10
Exhibitors	11
Tutorials	14
Keynotes	17
Invited Speakers	19
Program-at-a-Glance	22
Technical Program	
Tuesday, 28 March 2023	27
Wednesday, 29 March 2023	28
Thursday, 30 March 2023	33
Friday, 31 March 2023	38
Saturday, 1 April 2023	40

FIBERPRO

YOUR NAVIGATION PARTNER

(Email) sales@fiberpro.com / (US) +1 408 835 7796 / (KOR) +82 42 360 0030

FIBERPRO is a leading developer of fiber optic-based inertial measurement solutions. Our closed-loop FOG (fiber optic gyro) technology provides significantly enhanced performance over not only open-loop solutions but also other closed-loop FOG IMUs. With one of the best cost-to-performance ratios on the market, it features improved linearity, reduced bias drift and cancelling of phase shift.

We strive to continually develop highly innovative technologies that solve our customers' problems and meet the ever-changing demands of the fiber optic sensor market.

Fizoptika Malta

VG1703

MINIATURE FIBER OPTIC GYROSCOPES

FOG-based IMUs

VG1703SPE

fizoptika.com

Welcome Message

Dear Colleagues and Friends,

We welcome you to the beautiful island of Kaua'i to present, exhibit, and participate in the 10th IEEE International Symposium on Inertial Sensors and Systems (Inertial'23)!

This year's event continues our established tradition, started in 2014 in Laguna Beach, CA, USA of informal international meetings discussing the latest developments of modern inertial sensors and emerging applications enabled by inertial sensors. In addition, this year you will find that we are including new initiatives and implementing sustainable practices.

The IEEE Inertial is sponsored by the IEEE Sensors Council and is the only IEEE event exclusively dedicated to inertial sensors and systems technology. The adoption and application of this technology is growing fast, with the global inertial sensors and systems market expected to increase by approximately 50% over the next 5 years.

Our symposium offers a rare opportunity to meet and network with leaders in the field of inertial sensors and systems in the relaxed tone of this focused international technical gathering. We hope the atmosphere, as well as the breadth and depth of research topics combined with the quality of invited and contributed technical presentations will continue to make the IEEE Inertial a 'must attend' event for you every year.

The IEEE Inertial has established itself as the premier forum for reporting the latest research, development, and commercialization results in modern inertial sensors technology. You will hear from world experts on the latest in materials and micro-fabrication processes, atomic and quantum innovations, novel designs, new physical principles, increased performance, and a growing number of new applications and business opportunities.

The technical program covers three and a half days of technical presentations. By design, this is a single-track symposium with high quality oral and poster presentations as well as exhibitions. Each presentation was carefully reviewed and selected by our Technical Program Committee (TPC), after a careful evaluation by at least three independent reviewers – the technical experts in the field. The TPC was led by Ron Polcawich (Chair) and Joan Giner (Vice Chair). Max Perez coordinated with our 7 distinguished invited and keynote speakers who will participate throughout the meeting. The program will begin on Tuesday with three tutorials offered in the areas of (i) inertial and imaging sensor fusion, (ii) ultracold atoms and quantum inertial sensors, and (iii) photonic inertial sensors. The tutorials are organized and chaired by Sunil Bhave.

The Digest of Technical Papers for the 2023 IEEE Inertial Sensors contains up to four-page versions of the standard technical papers and abbreviated two-page Late News presentations, all provided to attendees in an electronic form. Most (but not all) presented papers will be available in the IEEE Xplore after the symposium. Our distinguished exhibitors and patrons will be involved throughout the symposium hosting events and available for discussions. Please be sure to visit their exhibitor booths and talk with them throughout the meeting to learn about their products, solutions, and career opportunities.

Welcome Message (continued)

Continuing the long-standing IEEE Inertial tradition, the Technical Program Committee will select one Best Student Paper (as well as first and second runner up papers). The results will be announced on Thursday ahead of the gala Lū'au. Good luck to all presenting students! In addition to the student awards we are also kicking off a new year long inertial application innovation competition coordinated by Clark Taylor and David Woodburn. There will also be career/hiring events hosted by Bosch & Northrop.

During this year's meeting, in addition to celebrating the 10th edition of INERTIAL, we are celebrating the 25th anniversary of the IEEE Sensors Council other components throughout the event. Sensors Council has chosen sustainability as the theme for 2023 and Inertial is going all in. You will notice significantly less paper and disposable materials at this year's event and I hope you join us on Saturday morning for a beach cleanup where we can all give a little back to this beautiful island.

The Inertial Symposium would not exist without the industry base in which so many of us work. To recognize the contributions of the inertial industry we will be holding a special appreciation reception on Wednesday during the poster session.

Our special thanks go out to all who have contributed to make this symposium a reality: the Oversight Committee, the Technical Program Committee, and many experts who contributed their time to evaluate submissions. We thank the IEEE Sensors Council for sponsoring the 2023 IEEE Inertial as well as our generous Patrons and Exhibitors. Many thanks to Caroline Kravec, and the entire staff at Conference Catalysts, LLC for administrative support.

Finally, thank you speakers, presenters, and attendees for making the 2023 IEEE Inertial Symposium such a unique event. We hope that you find the INERTIAL'23 Symposium professionally stimulating and enjoyable, and of course, we are looking forward to seeing you back next year for the INERTIAL'24 (Location to be disclosed on Thursday).

Michael Larsen General Co-Chair IEEE INERTIAL 2023

Mike St. Lu

Kari Moran General Co-Chair IEEE INERTIAL 2023

Kariflom

2023 Organizing Committee

General Co-Chairs

Mike Larsen, Northrop Grumman, USA Kari Moran, Naval Information Warfare Center Pacific, USA

TPC Co-Chairs

Ron Polcawich, U.S. Army Research Laboratory, USA Joan Giner, Bosch Sensortec, Germany

Treasurer

Igor Prikhodko, Analog Devices Inc., USA

Tutorial Chair

Sunil Bhave, Purdue University, USA

Invited/Keynote Speaker Liasson

Max Perez, ColdQuanta, USA

Patron/Exhibitor Chair

Dušan Radović, Bosch Sensortec, Germany

Family Activities/Community Engagement Chair

Brittney Larsen, USA

Oversight Committee

Andrei Shkel, *University of California, Irvine, USA*Olivier Le Traon, *ONERA, France*Giacomo Langfelder, *Politecnico di Milano, Italy*Toshiyuki Tsuchiya, *Kyoto University, Japan*Shuji Tanaka, *Tohoku University, Japan*

Symposium Management

Conference Catalysts, LLC

Technical Program Committee

Caroline Coutier, CEA Leti, France Diego Serrano, Panasonic, USA

Dingbang Xiao, National University of Defense Technology, China

Doug Meyer, Northrop Grumman, USA

Eugene Hwang, Senior Sensor Development Engineer, SpaceX, USA

Frank Narducci, NPS, USA

Jae Yoong Cho, Enertia Microsytem inc, USA

Johannes Classen, Bosch Sensortec, Germany

John Burke, OUSD (R&E), USA

Marra Cristiano, TDK-InvenSense Italy srl, Italy

Matt Cashen, Vector Atomic, USA

Matt Squires, AFRL, USA

Ohad Zohar, MEMS Technology Center, Rafael Advanced Defense Systems, USA

Paola Carulli, ST Microelectronics, Italy

Paolo Minotti, Bosch Sensortec, Germany

Philippe Bouyer, CNRS- Institut d'Optique Graduate School, France

Radwan M. Noor, KACST, Saudi Arabia

Slava Krylov, Tel Aviv University, Israel

Steven Tin, Honeywell, USA

Susannah Jones, DSTL, UK

Shuji Tanaka, Tohoku University, Japan

Takshiro Tsukamoto, Tohoku University, Japan

Tim Brosnihan, SEMI, USA

Tommi Piirainen, Murata Electronics Oy, Finland

Technical Reviewers

Fabio Alves Filipe Alves Ryuta Araki Sina Askari Julien Auger Ajay Bhat Philippe Bouyer Tim Brosnihan Justin Brown Alexander Buhmann Mike Bulatowicz John Burke Paola Carulli Matt Cashen Jae Yoong Cho Johannes Classen Caroline Coutier Marco Gadola Leonardo Gaffuri Pagani Joan Giner Brian Grantham Jeffrey Gregory Robert Hennessy

Ryan Hennessy

Eugene Hwang

Tamio Ikehashi

Tobias Hiller

Chad Hoyt

Rahul Jhaveri Susannah Jones Michael Judy Ryan Knight Slava Krvlov Burkhard Kuhlmann Giacomo Langfelder Michael Larsen Olivier Le Traon Raphael Levy Robert Lutwak Ashraf Mahmoud Cristiano Marra Ross Merritt Doug Meyer Paolo Minotti Radwan Mohammednoor Kari Moran Eurico Moreira Sachin Nadig Frank Narducci Mikko Partanen Tommi Piirainen Ron Polcawich Dušan Radović Amir Rahafrooz John Reinke

Michele Ricci Andrew Sabater Rolf Scheben Dennis Schlippert Frank Schmid Diego Serrano Neal Solmeyer Mattew Squires Andrew Stewart Jianakun Sun Xiaopeng Sun Kevin Sweeney Shuii Tanaka Steven Tin Takashiro Tsukamoto Daryosh Vatanparvar Bernard Vau Thad Walker Yuchen Wang Yusheng Wang Haoran Wen Xuezhong Wu Dingbang Xiao Valentina Zega Kai Zeng Feng Zhu Ohad Zohar Sergev Zotov

Platinum Patron

NORTHROP' **GRUMMAN**

Gold Patrons

Silver Patrons

Bronze Patron

Welcome Reception Patron

Lanyard Patron

Student Award Patron

Exhibitors

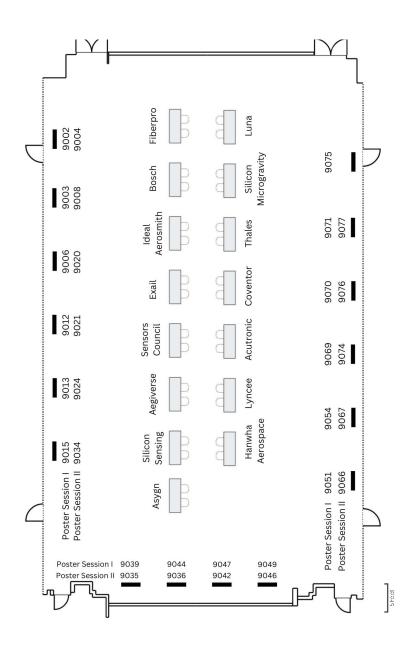



Exhibit and Poster Hall Layout

TAMAM

World Leading Inertial Navigation Solutions

Technology

People

Vision

iai.co.il/contact-us

Tutorials

Tuesday, March 28th | 08:40 - 10:40 HST

Inertial and Imaging Sensor Fusion for Autonomous Vehicles

Room: Kona (Salon 1)

Instructor: Igor Prikhodko, Analog Devices, USA

Abstract: Today the emerging field of autonomous driving demands accurate positioning and trustworthy self-localization methods which requires new technologies and hardware. The common approach is to fuse all available information sources: GPS, IMU equipped with the tri-axial gyroscope and accelerometer.

odometer, and perception sensors (camera, lidar, radar). This tutorial will discuss trade-offs between inertial-based (IMU) and perception-based sensors for Autonomous Vehicles (Avs) requiring 10 cm positional accuracy 100% of the time without using GPS. The perception sensors provide centimeter accuracy but require powerful graphical processors to perform feature recognition. In contrast to perception sensors, IMUs allow for navigation completely independent of external references (e.g. satellites, road markers, geomaps, databases) and immunity to weather conditions. MEMS IMUs are attractive due to the SWaP-C metric, but only suitable for short-term inertial dead-reckoning because of positional error growth with time. The long-term navigation using MEMS, however, is possible when aided using perception sensors available in AV for correction of IMU drift. This tutorial will present various approach to solve vehicle localization problem by using MEMS IMU aided with Visual Odometry, The trade-offs between 1) Wheel Odometry, 2) Camera Odometry, 3) Lidar Odometry, and 4) Radar Odometry will be covered in detail. Visual Odometry in autonomous vehicles works by exploiting geometrical consistency of surrounding stationary objects to determine its track in 3D. VO implications for correcting IMU drift as well as 3D map generation will be discussed during tutorial. Finally, this tutorial will address hardware and primarily software challenges associated with developing an ambitious navigation system fusing all available input sensors (IMU, camera, lidar, wheel speed) to obtain an accurate vehicle position on the map without GPS.

Tutorials (continued)

Tuesday, March 28th | 11:10 - 13:10 HST

Ultracold Atoms and Quantum Inertial Sensors for the Masses

Room: Kona (Salon 1)

Instructor: Noah Fitch, ColdQuanta, USA

Abstract: Interferometry based on quantum systems, e.g. ultracold atoms, offers unprecedented sensitivity and performance when compared to classical inertial sensors. Such systems also commonly feature absolute measurements as their transduced signals are functions of their perfectly reproducible internal structure and the

fundamental constants of nature. Choices of the internal quantum states, and procedures used to manipulate them, can make these systems highly sensitive to, or immune to, signals of interest.

Despite significant promise and effort over the past decades, practical deployment of quantum sensors in harsh real-world environments remains a challenge. One barrier is the required expertise, cost, and access to suitable quantum systems for development of devices. Infleqtion/ColdQuanta's Albert project seeks to remove this barrier, by making ultracold quantum matter available both on the cloud or delivered as turn-key systems customized for target applications. Access to this advanced hardware also comes with easy-to-use abstractions and interfaces, providing tools for both experts and quantum novices alike. Albert makes the development of quantum sensors more accessible than ever before and facilitates exploration of both established and emerging interferometric techniques.

In this tutorial, I will introduce methods for creating ultracold quantum matter, how that matter can be used as an interferometer for inertial sensing, and how these methods are or will be implemented and accessed on Albert. I will discuss both traditional light-pulse (Raman, Bragg) atom interferometry as well as emerging approaches based on so-called "atomtronic" and "shaken lattice" methodologies, which provide a pathway to higher precision and compact sensor packaging.

Tutorials (continued)

Tuesday, March 28th | 14:30 - 16:30 HST

Photonic Inertial Sensors with Nano-Opotmechanical Displacement Readout

Room: Kona (Salon 1)

Instructor: Matt Eichenfield, Associate Professor and SPIE Endowed Chair in Optical Sciences, University of Arizona Distinguished Faculty Joint Appointee, Sandia National Leberatorica, USA

National Laboratories, USA

Abstract: MEMS accelerometers and gyroscopes typically use an electrical displacement readout mechanism, such as a capacitor gap between the proof

mass and frame or piezoelectric/piezoresistive readout of tether strain. Optical readout for accelerometers have up until recently relied on bouncing a laser off the surface of the proof mass a single time. However, advancements in on-chip photonics and nano-optomechanics over the past ~15 years have enabled MEMS accelerometers to take advantage of on-chip displacement readout mechanisms that leverage long waveguide paths and high-Q cavities that are exquisitely sensitive to mechanical displacement and strain, achieving displacement sensitivities that are not attainable for typical electrical readout schemes. In this tutorial, I will present the fundamentals of optomechanical inertial sensors so that the attendee can understand the mechanisms that underlie the displacement sensing, fundamental noise sources, and packaging requirements/challenges.

Hanwha Aerospace

Navigation Business

Our Navigation Systems are applied to various fields such as Weapon Systems/Space Launch Vehicles/Mobility Solutions

Keynotes

Wednesday, March 29th | 08:40 - 09:25 HST

Inertial sensing with Bose-Einstein condensates

Room: Kona (Salon 1)

Instructor: Sven Abend, Leibniz Univ. Hannover,

Germany

Abstract: Ultra-cold quantum gases promise to boost the sensitivity and accuracy of inertial matter-wave interferometers. Benefiting from the low expansion energies, novel methods to coherently manipulate the atomic ensembles with high efficiencies, such as twinlattice interferometry, allow to create interferometers

featuring (i) large space-time areas, (ii) discrimination of accelerations and rotations as well as (iii) Sagnac interferometers performing multiple loops. As the sensitivity of these devices increases with the time spent by the atoms in the interferometer, sensors operated in space may reach even higher precision. We take benefit of various microgravity platforms such as the Bremen drop tower, the Einstein elevator in Hannover, sounding rockets and the international space station to advance the necessary methods for space-borne inertial sensing.

Thursday, March 30th | 08:35 - 09:15 HST

Inertial Sensors and Sensor Fusion for Robust Location Applications

Room: Kona (Salon 1)

Instructor: Ken Davis, Qualcomm Technologies

Incorporated, USA

Abstract: Demand for location aware platforms has given rise to increasingly sophisticated location aware platforms that can require centimeter accuracy in challenging environments. A strategy to meet these

opportunities is to employ a variety of sensors and signals and play to their strengths utilizing machine learning situational awareness models. This presentation will provide an overview of how inertial sensors and sensor fusion techniques are applied to extended reality, automotive, and interplanetary use cases.

Keynotes (continued)

Friday, March 31st | 08:35 - 09:15 HST

Narrow Linewidth Atomic Clock Transitions for Inertial Sensing and Fundamental Physics

Room: Kona (Salon 1)

Instructor: Jason Hogan, Stanford University, USA

Abstract: I will describe a new approach to inertial sensing using atom interferometry that takes advantage of the narrow linewidth transitions used by the best atomic clocks in the world. These hybrid "clock" atom interferometers offer a number of advantages, including the possibility of substantially improved sensitivity using

enhanced matter wave optics that increase the enclosed space-time area of the interferometer. In particular, I will show results demonstrating large momentum transfer (LMT) atom optics that achieve a record-setting momentum separation between the interferometer arms of over 400 hk. Unlike previous work in LMT enhancement, clock atom interferometry supports the use of comparatively 'hot' atoms, substantially reducing the complexity of atom cooling requirements for an applied sensor. Clock atom interferometry also has broad potential applications in fundamental physics experiments which I will describe, and is central to the MAGIS-100 experiment, a 100-meter-tall atomic sensor under construction at Fermilab that will probe for ultra-light dark matter candidates and will serve as a prototype for a future gravitational wave detector use cases.

Invited Speakers

Wednesday, March 29th | Atomic Sensors Quantum Sensors for Inertial Navigation

Room: Kona (Salon 1)

Instructor: Joseph Cotter, Imperial College London,

UK

Abstract: Satellite navigation systems cannot be relied on underground or underwater, they are vulnerable to local weather conditions, and can be spoofed or blocked. To overcome some of these vulnerabilities the Imperial team are developing inertial sensor

technologies that harnesses quantum physics to deliver measurements of acceleration and rotation with extremely low scale factor and bias drift. I will present recent results from our multi-axis laboratory sensor that can measure accelerations and rotations in a single unit. I will also introduce our new transportable quantum inertial sensor that is currently undergoing moving platform field trials.

Wednesday, March 29th | Piezoelectric Sensors PinPoint® Thin Film PZT MEMS Gyroscope

Room: Kona (Salon 1)

Instructor: Mark Marshall, Silicon Sensing Systems,

Ltd.

Abstract: A brief description of the PinPoint® PZT Coriolis Vibratory Gyro inertial sensing performance, construction and mode of operation, including key properties and characteristics of the PZT film used as both gyro actuator and transducer.

Invited Speakers (continued)

Friday, March 31th | Final Session of Contributed Talks

Photonic Integrated Circuits for Cavity Optomechanical Inertial Sensors: From the Classical to Quantum Regime

Room: Kona (Salon 1)

Instructor: Dr Ying Lia Li (Lia), CEO of Zero Point Motion,

UK

Abstract: High-volume low-cost optical devices can be realised through scalable photonic integrated circuits (PICs) to create optical analogues of existing

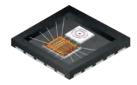
technologies that benefit from increased signal-to-noise readout and the coherence of lasers. Zero Point Motion reports on progress in developing chipscale optical inertial sensors, where an optical resonance is highly sensitive to the mechanical response of inertial test-masses. When optimised, these so-called cavity optomechanical systems can reach displacement sensitivities at 10^(-18)m/Hz^(1/2), with paths towards quantum sensing where the mechanical test-mass is cooled to a macroscopic quantum ground state. Our core mission is first commercialising classical sensors with 100x lower noise floor than existing automotive accelerometers and gyroscopes, exploiting the PIC supply chain to mass-produce photonics chips with integrated lasers and detectors, and combining these semiconductor fabrication steps with existing MEMS processes to create released test-mass structures.

AS40XX

Integrated circuits for inertial sensors

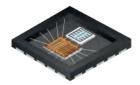
AS4001

Suited to 1-DOF accels


capacitive readout, resonance frequency tracking, and more.

2 DACs - 1 Charge Amplifier + ADC - 1 Temperature Sensor - SPI / I2C - RISC V

AS4002



2-DOF or differential accels, and more.

5 DACs - 2 Charge Amplifier + ADC - 1 Temperature Sensor - SPI / I2C - RISC V

AS40XX

Build on the AS40XX features and get a specific design suited to your specifications.

ADCs - DACs - Instrumentation amplifiers - Charge amplifiers -Temperature Sensors - High voltage generators - PLLs - Signal Processing IPs - RISC V

Program at a Glance

Time (HST)	TUESDAY, MARCH 28
8:30-8:40	Opening Remarks Room: Kona (Salon 1)
8:40-10:40	Inertial and Imaging Sensor Fusion for Autonomous Vehicles Room: Kona (Salon 1)
10:40-11:10	Coffee Break/ Exhibits Room: Kauai Court
11:10-13:10	Ultracold Atoms and Quantum Inertial Sensors for the Masses Room: Kona (Salon 1)
13:10-14:30	Lunch Room: Kauai Court
13:10-17:10	Sensors Standards Workshop Room: Koʻolau (Salon 3)
14:30- 16:30	Photonic Inertial Sensors with Nano-Opotmechanical Displacement Readout Room: Kauai Court
16:30-16:35	Closing Remarks Room: Kauai Court
18:00-20:00	Ideal Aerosmith Welcome Reception Room: Kauai Court and Gardens

Program at a Glance (continued)

Time (HST)	WEDNESDAY, MARCH 29
8:20-8:40	Opening Remarks Room: Kona (Salon 1)
8:40-9:25	Keynote: Inertial sensing with Bose-Einstein condensates Room: Kona (Salon 1)
9:25-10:45	Atomic Sensors Room: Kona (Salon 1)
10:45-11:10	Exhibitor Lightning Round Room: Kona (Salon 1)
11:10-11:35	Coffee Break/Exhibits Room: Kauai Court
11:35-12:40	Gyroscopes Room: Kona (Salon 1)
12:40-14:05	IAI Lunch Room: Kauai Court
14:05-15:35	Piezoelectric Sensors Session Room: Kona (Salon 1)
15:35-15:40	Competition Announcement Room: Kona (Salon 1)
15:40-16:05	Poster Lightning Round Room: Kona (Salon 1)
16:05-17:35	Poster Session I Room: Kauai Court
17:35-17:45	Student Competition Informative Session Room: Kona (Salon 1)
17:35-18:35	Open Poster Session Sponsor Appreciation Room: Kauai Court
18:00-19:00	Bosch Career Event Room: Puna Court

Program at a Glance (continued)

Time (HST)	THURSDAY, MARCH 30
7:30-8:30	Northrop Grumman Recruitment Breakfast Room: Puna AB
8:35-9:15	Keynote: Inertial Sensors and Sensor Fusion for Robust Location Applications Room: Kona (Salon 1)
9:15-10:35	Inertial Sensors Room: Kona (Salon 1)
10:35-11:00	Coffee Break/ Exhibits Room: Kauai Court
11:00-12:25	Measurment Systems and Error Minimization Room: Kona (Salon 1)
12:25-13:55	Lunch Room: Kauai Court
13:55-15:45	Compensation Techniques Room: Kona (Salon 1)
15:45-16:25	Poster & Live Demo Lightning Round Room: Kona (Salon 1)
16:25-18:00	Poster Session II Room: Kauai Court
18:00-18:45	Fehlerkultur, INERTIAL 2024 & Awards Room: Kona (Salon 1)
18:45-20:45	Luau Dinner Room: Lu'au Gardens

Program at a Glance (continued)

Time (HST)	FRIDAY, MARCH 31
7:30-8:30	WiSe Breakfast Room: Puna AB
8:35-9:15	Keynote: Narrow Linewidth Atomic Clock Transitions for Inertial Sensing and Fundamental Physics Room: Kona (Salon 1)
9:15-10:15	Final Session Room: Kona (Salon 1)
10:15-10:40	Coffee Break/Exhibits Room: Kauai Court
10:40-12:15	Late News Room: Kona (Salon 1)
12:15-12:20	Closing Remarks Room: Kona (Salon 1)

Time (HST)	SATURDAY, APRIL 1
8:00-11:30	Beach Clean Up

*All times appear in Hawaiian Standard Time (HST) GMT-10

07:30 - 08:30

Tutorial Registration Room: Kona (Salon 1)

08:30 - 08:40

Opening Remarks Room: Kona (Salon 1)

08:40 - 10:40

Tutorial: Inertial and Imaging Sensor Fusion for Autonomous Vehicles

Igor Prikhodko, Analog Devices, USA

Room: Kona (Salon 1)

Session Chair(s): Sunil Bhave, Purdue University, USA

10:40 - 11:10

Coffee Break Room: Kauai Court

11:10 - 13:10

Tutorial: Ultracold Atoms and Quantum Inertial Sensors for the Masses

Noah Fitch, ColdQuanta, USA

Room: Kona (Salon 1)

Session Chair(s): Sunil Bhave, Purdue University, USA

13:10 - 14:30

Lunch

Room: Kauai Court

13:10 - 17:10

Sensors Standards Workshop

Room: Ko'olau (Salon 3)

14:30 - 16:30

Tutorial: Photonic Inertial Sensors with Nano-Opotmechanical Displacement

Readout

Matt Eichenfield, University of Arizona, USA

Room: Kona (Salon 1)

Session Chair(s): Sunil Bhave, Purdue University, USA

16:30 - 16:35

Closing Remarks

Room: Kona (Salon 1)

18.00 - 20.00

Ideal Aerosmith Welcome Reception

Room: Kauai Court and Gardens

All attendees are invited to the Welcome Reception for drinks and light hors d'oeuvres.

07:20 - 08:20 **Registration**

Room: Kona (Salon 1)

08:20 - 8:30

Opening Remarks Room: Kona (Salon 1)

Session Chair(s): Michael Larsen, Northrop Grumman

Kari Moran. Naval Information Warfare Center Pacific

08.30 - 8.40

Session: Sensors Council 25th Anniversary Introduction

Room: Kona (Salon 1)

Session Chair(s): Ravinder Dahiya, Sensors Council President

08:40 - 09:25

Keynote: Inertial Sensing with Bose-Einstein Condensates

Sven Abend

Room: Kona (Salon 1)

Session Chair(s): Tobias Hiller, Robert Bosch GmbH

09:25 - 10:45

Session: Atomic Sensors

Room: Kona (Salon 1)

Session Chair(s): Tobias Hiller, Robert Bosch GmbH

9:25

9073: Membrane-Based Optomechanical Accelerometry

Mitul Dey Chowdhury, Aman Agrawal, Dalziel Wilson

University of Arizona. United States

9:45

9060: ORIENTATION-INDEPENDENT, Atomic Magnetometer for MAGNETIC-Aided Inertial Navigation

Justin Brown{2}, Joshua Abney{2}, Michal Cwik{2}, Daniel Richardson{1}, Jonathan Jeffrey{1}, John Shields{1}, Robert Wyllie{1}

{1}Georgia Tech Research Institute, United States; {2}Physical Sciences Inc., United States

10:05

9033: Development of a STRAP-DOWN, Absolute Atomic Gravimeter for MAP-Matching Navigation

Jonathan Kohler, Artyom Vitouchkine, Akash Rakholia, Christopher Corder, Arman Cingoz, Martin Boyd, Andrew Dowd, Gunnar Skulason, Matthew Cashen Vector Atomic, United States

10.25

INVITED: Quantum Sensors for Inertial Navigation

Joseph Cotter

Imperial College London, UK

10:45 - 11:10

Exhibitor Lightning Round

Room: Kona (Salon 1)

Session Chair(s): Ohad Zohar, MEMS Technology Center, Rafael Advanced Defense

Systems

11:10 - 11:35

Coffee Break/Exhibits

Room: Kauai Court

11:35 - 12:40

Session: MEMS Gyroscopes

Room: Kona (Salon 1)

Session Chair(s): Paola Carulli, ST Micro

11:35

9079: A High-Performance Resonant MEMS Accelerometer with a Residual Bias Error of 30 µg and Scale Factor Repeatability of 2 ppm

Lokesh Gurung{1}, Theo Miani{1}, Guillermo Sobreviela-Falces{1}, Douglas Young{1}, Colin Baker{1}, Ashwin Seshia{2}

{1}Silicon Microgravity, United Kingdom; {2}University of Cambridge, United Kingdom

11:55

9045: A Navigation Grade, Software Defined Gyroscope and Extensions for Generic Vibratory Inertial Sensors

David Hayner, Dorian Challoner Coherent Sensors, Inc., United States

12:15

9043: A New Design of Mode-Matched (100) Silicon Ring Gyroscope with Chamfered Rectangle Springs Immune to Fabrication Error

Shuya Okayama, Amit Banerjee, Jun Hirotani, Toshiyuki Tsuchiya Kyoto University, Japan

12:40 - 14:05

IAI Lunch

Room: Kauai Court

14:05 - 15:35

Session: Piezoelectric Sensors

Room: Kona (Salon 1)

Session Chair(s): Ryan Knight, DEVCOM-ARL

14:05

INVITED: PinPoint® Thin Film PZT MEMS Gyroscope

Mark Marshall, Eric Whitley

Silicon Sensing Systems, Ltd., United Kingdom

14.25

9058: A Low-Voltage Wideband AlN-on-Si Gyroscope with Sub 10-DPH Bias Instability Mode Matched Using Laser Trimming

Zhenming Liu{1}, Haoran Wen{3}, Farrokh Ayazi{2}

{1}Georgia Institute of Technology, United States, {2}Georgia Institute of Technology and StethX Microsystems Inc, United States; {3}StethX Microsystems Inc, United States

14:45

9068: A Centrally-Anchored High-Q Tunable Piezoelectric MEMS Resonators for Wide Temperature Range RTC

Yaoyao Long{1}, Zhenming Liu{1}, Charlotte Wehner{1}, Farrokh Ayazi{2} {1}Georgia Institute of Technology, United States; {2}Georgia Institute of Technology and StethX Microsystems Inc, United States

15:05

9018: Laser Induced Chemical Etching of Quartz for MEMS Sensors Fabrication Marina Sirota{1}, Neta Melech{2}, Boris Lipavsky{1}, Omer Halevy{2}, Slava Krylov{2}, David Nuttman{1}

{1}Israel Aerospace Industries, Israel; {2}Tel-Aviv University, Israel

15:35 - 15:40

Competition Announcement

Room: Kona (Salon 1)

Session Chair(s): Michael Larsen, Northrop Grumman

15:40 - 16:05

Poster Lightning Round I

Room: Kona (Salon 1)

Session Chair(s): Giacomo Langfelder, Politecnico di Milano

16:05 – 17:35 Poster Session I

Room: Kauai Court Session Chair(s): Giacomo Langfelder, *Politecnico di Milano*

9002: Practical Approaches to Allan Deviation Analysis of Low-Cost MEMS Inertial Sensors

Tobias Hiller{2}, Miloš Vujadinović{2}, Lukas Blocher{2}, Wolfram Mayer{1}, Dušan Radović{1}, Thorsten Balslink{2}, Thomas Northemann{2}, Alexander Buhmann{2} {1}Bosch Sensortec GmbH, Germany; {2}Robert Bosch GmbH, Germany

9003: Compensation of Non-Orthogonality Changes in Low-Cost MEMS Gyroscopes Across Soldering, Temperature and Lifetime

Tobias Hiller{2}, Patrick Tritschler{1}, Lukas Blocher{2}, Wolfram Mayer{1}, Miloš Vujadinović{2}, Thorsten Balslink{2}, Martin Schöfthaler{1}, Thomas Northemann{2} {1}Bosch Sensortec GmbH, Germany; {2}Robert Bosch GmbH, Germany

9006: Modeling and Experimental Analysis of Low-Cost MEMS Gyroscopes Under PCB Bending Stress

Wolfram Mayer{1}, Alexandra Küster{1}, Patrick Tritschler{1}, Tobias Hiller{3}, Dušan Radović{1}, Andre Zimmermann{2}

{1}Bosch Sensortec GmbH, Germany; {2}Institute for Micro Integration, The University of Stuttgart, Germany; {3}Robert Bosch GmbH, Germany

9012: Quantifying IMU Forward Models

Michael R. Walker II, David Olson, Jason Bingham Sandia National Laboratories. United States

9013: Three Axis Rate Table Forward Model

Jason Bingham, Michael R. Walker II, David Olson Sandia National Laboratories, United States

9015: Reducing Thermo-Elastic Damping of MEMS Resonators Using a Virtual Spring

Chen Tang{2}, Zhiheng Wu{2}, Martin Heller{1}, Daisuke Nishinohara{1}, Toma Fujita{1}, Tamio Ikehashi{2}

{1}Rohm Co., Ltd., Japan; {2}Waseda University, Japan

9039: Combined Rotation and Magnetic Field Sensor Based on Lissajous FM Technique

Takashiro Tsukamoto, Shuji Tanaka Tohoku University. Japan

9044: Locomotive Syndrome Assessment in Older Adults Using a Single Inertial Measurement Unit

Iman Hosseini{1}. Marvam Ghahramani{2}

{1}Australian National University, Australia; {2}University of Canberra, Australia

9047: Dynamical Encircling of a Lock-In Area with a Combination of Fast and Slow Dithering in a Ring Laser Gyroscope

Woo-Seok Choi, Jun-Eon An, Cheon-Joong Kim, Kyu-Min Shim Agency for Defense Development, Korea

9049: Impact of Amplitude and Demodulation Errors on the Nonlinear Frequency Modulated Gyroscope

Andrew Sabater

Naval Information Warfare Center Pacific, United States

9051: Analysis and Compensation of Phase Error for the Butterfly Gyroscope

Zhanqiang Hou, Yunbin Kuang, Dingbang Xiao, Xuezhong Wu National University of Defense Technology, China

9054: A Digital Twin to Model the Impact of Etch Profile on MEMS Gyroscope Performance

Christopher Welham{1}, Arnaud Parent{4}, Bryan Helmer{2}, Eran Valfer{2}, Tommi Piirainen{3}, Mikko Partanen{3}, Matti Liukku{3}

{1}Coventor, A Lam Research Company, France; {2}Lam Research, Israel; {2}Lam Research, Italy; {3}Murata Electronics Oy, Finland; {4}oventor, A Lam Research Company, France

9069: Large Amplitude Linear Drive Quadruple Mass Gyroscope

Ryan R. Knight{2}, Christopher Scheri{3}, Jeffrey S. Pulskamp{2}, Ryan Q. Rudy{1}, Don L. DeVoe{4}

{1}Army Research Laboratory, United States; {2}DEVCOM Army Research Laboratory, United States; {3}Oak Ridge Associated Universities, United States; {4}University of Maryland, College Park, United States

9070: c-Axis Parallel ZnO Piezoelectric Multilayer for BAW Gyroscope Applications Ayaka Hanai, Shinya Kudo, Kohei Ekida, Junjun Jia, Takahiko Yanagitani Waseda University, Japan

9071: Shear Mode Bulk Acoustic Wave Type Gyroscope Based on c-Axis Tilted ScAIN Piezoelectric Films

Momoka Matsumura, Yuna Koike, Ryo Seki, Takahiko Yanagitani Waseda University, Japan

9075: Analysis of Charge Accumulation Effect in Microshell Resonator Gyroscope Ming Ze Gao, Dingbang Xiao, Sheng Yu, Jun Feng, Jiangkun Sun, Yongmeng Zhang National University of Defense Technology, China

17:35 - 17:45

Student Competition Planning Session

Room: Kona (Salon 1)

Session Chair(s): Michael Larsen, Northrop Grumman

17:35 - 18:35

Open Poster/ Sponsor Appreciation Reception

Room: Kauai Court

18:00 - 19:00

Consumer Sensor Development #LikeABosch: Markets, Products, Career

Insights

Room: Puna Court

07:30 - 08:35

Registration

Room: Kona (Salon 1)

07.30 - 08.30

Northrop Grumman Recruitment Breakfast

Room: Puna AB

08:35 - 09:15

Keynote: Inertial Sensors and Sensor Fusion for Robust Location Applications

Ken Davis, Qualcomm Technologies Incorporated, USA

Room: Kona (Salon 1)

Session Chair(s): Johannes Classen, Bosch

09:15 - 10:35

Session: Inertial Navigation Sensors

Room: Kona (Salon 1)

Session Chair(s): Johannes Classen, Bosch

9:15

9072: "Sugar-Cube": Pedestrian Hardware Platform That Fits in the Sole of a Shoe

Austin Parrish{1}, Chi-Shih Jao{2}, Danmeng Wang{1}, Andrei Shkel{1}

{1}University of California Irvine, MicroSystems Lab – MEMS, United States; {2}University of California, Irvine, United States

9:35

9025: Prio-IMU: Prioritizable IMU Array for Enhancing Foot-Mounted Inertial Navigation Accuracy

Chi-Shih Jao{2}, Danmeng Wang{1}, Andrei Shkel{1}

{1}University of California Irvine, MicroSystems Lab – MEMS, United States; {2}University of California, Irvine, United States

9:55

9028: Searching for the Origin of Zero-Rate Offset and Scale-Factor Drift in NEMS-Based Nav-Grade Gyroscope

Andrea Buffoli(2), Pietro Segala(2), Marco Gadola(2), Thierry Verdot(1), Philippe Robert(1), Giacomo Langfelder(2)

{1}CEA-Leti, France; {2}Politecnico di Milano, Italy

10:15

9016: Sensor Individual Non-Orthogonality Correction in Low-Cost MEMS Gyroscopes Using Neural Networks

Patrick Tritschler{1}, Tobias Hiller{3}, Torsten Ohms{1}, Wolfram Mayer{1}, Andre Zimmermann{2}

{1}Bosch Sensortec GmbH, Germany; {2}Institute for Micro Integration, The University of Stuttgart, Germany; {3}Robert Bosch GmbH, Germany

10:35 - 11:00

Coffee Break/ Exhibits Room: Kauai Court

11:00 - 12:25

Session: Measurment Systems and Error Minimization

Room: Kona (Salon 1)

Session Chair(s): Eugene Hwang, SpaceX

11:00

9023: Optimization of Localization Error in Multi-Agent Systems Through Cooperative Positioning: Autonomous Navigation in Partially Denied GNSS Environments

Shahram Shahkar, Khashayar Khorasani Concordia University, Canada

11:20

9032: An Autonomous North Alignment Method for Motion Simulators

Bernard Vau, Mehdi Bussutil, Nicolas Bernard

iXblue, France

11:40

9010: A New High-G Measurement System for Severe Perforation Tests

Maylis Lavayssière{1}, Jérôme Willemin{2}, Aurélien Hottelet{1}, Nicolas Stephanopoli{1}, Clément Grein{1}, Clément Garaffa{2}, Esteban Cabanillas{2}, Prince-Arnaud Ramahefa{2}, Stéphane Driussi{2}, Martin Gauroy{2}, Justin Boussac{2}, Stephan Louwers{1}

{1}CEA DAM Gramat, France; {2}Université Grenoble Alpes, CEA-Leti, France

12:00

9057: Low Frequency Inertial Sensing

Andrea Nelson, Adam Hines, Guillermo Valdes, Jose Sanjuan, Felipe Guzman Texas A&M University, United States

12:25 - 13:55

Lunch

Room: Kauai Court

14:00 - 15:45

Session: Compensation Techniques

Room: Kona (Salon 1)

Session Chair(s): Diego Serrano, Panasonic

14:00

9009: Modeling of Phase Noise in Mode-Split Open-Loop MEMS Gyroscopes Miloš Vujadinović{2}, Tobias Hiller{2}, Lukas Blocher{2}, Dušan Radović{1}, Thorsten Balslink{2}, Thomas Northemann{2}, Bhaskar Choubey{3}

{1}Bosch Sensortec GmbH, Germany; {2}Robert Bosch GmbH, Germany; {3}University of Siegen, Germany

14:20

9041: Dynamic Quality Factor Equalization for Improved Bias Stability in Mode-Matched Gyroscopes

Ryan Rudy{1}, Ryan R. Knight{1}, Carl Hauser{2}, Jeffrey S. Pulskamp{1} {1}DEVCOM Army Research Laboratory, United States; {2}Oak Ridge Associated Universities, United States

14.40

9048: Quadrature Compensation and Demodulation Phase Reference Selection for FM Accelerometers

Andrew Sabater

Naval Information Warfare Center Pacific, United States

15:00

9026: Towards a Better Understanding of Offset Changes Across Temperature in Mode-Split Open-Loop MEMS Gyroscopes

Miloš Vujadinović{1}, Tobias Hiller{1}, Lukas Blocher{1}, Thomas Northemann{1}, Bhaskar Choubey{2}

{1}Robert Bosch GmbH, Germany; {2}University of Siegen, Germany

15:20

9040: Virtually Rotated Multiple Mass Resonator Enabled by Electrostatic Frequency and Q-Factor Tuning

Jianlin Chen{2}, Takashiro Tsukamoto{2}, Giacomo Langfelder{1}, Shuji Tanaka{2} {1}Politecnico di Milano, Italy; {2}Tohoku University, Japan

15:45 - 16:25

Poster Lightning Round II

Room: Kona (Salon 1)

Session Chair(s): Ryan Rudy, U.S. Army Research Laboratory

16:25 - 18:00

Poster Session II Room: Kauai Court

Session Chair(s): Ryan Rudy, U.S. Army Research Laboratory

9004: Highly Accurate Inertial Navigation That Compensates for the Earth's Rotation and Sensor Bias Using Non-Holonomic Constraints

Masato Kimishima, Tsutomu Sawada, Akihiro Sonoura, Toru Amano, Hiroyuki Kamata, Kosei Yamashita

Sony Group Corporation, Japan

9008: Scale Factor Instability Noise in Mode-Split Open-Loop MEMS Gyroscopes Miloš Vujadinović{2}, Tobias Hiller{2}, Lukas Blocher{2}, Thorsten Balslink{2}, Dušan Radović{1}, Thomas Northemann{2}, Alexander Buhmann{2}, Bhaskar Choubey{3} {1}Bosch Sensortec GmbH, Germany; {2}Robert Bosch GmbH, Germany; {3}University of Siegen, Germany

9020: Development of Inertial Acceleration Measurement Device with Zero-Compliance Mechanism

Takeshi Mizuno, Yuji Ishino, Masaya Takasaki Saitama University, Japan

9021: 71 kHz Frequency Modulated PiezoMEMS Gyroscope

Antti Ontronen{1}, Ville Kaajakari{1}, Konsta Wjuga{1}, Akiko Uno{2}, Seiji Umezawa{2}, Yasuhiro Aida{2}

{1}Murata Electronics Oy, Finland; {2}Murata Manufacturing Co., Japan

9024: Detection and Identification of GNSS Spoofing Cyber-Attacks for Naval Marine Vessels

Mahdi Taheri, Mohammad Reza Nematollahi, Khashayar Khorasani Concordia University, Canada

9034: MEMS Directional Underwater Acoustic Sensor Operating in Near Neutral Buoyancy Configuration

Justin Ivancic, Jeffrey Catterlin, Gamani Karunasiri, Fabio Alves Naval Postgraduate School, United States

9035: Efficient Online Compression for MEMS Based BCG Wearable Sensors on ULP FPGA

Ulf Kulau, Abdelrahman Ahmed Hamburg University of Technology, Germany

9036: Manufacture of Hemi-Spherical Resonators Using Printable Fused Silica Glass Yahya Atwa, Hamza Shakeel

Queen's University Belfast, United Kingdom

9042: Efficient Quadrature Suppression for Improved Performance of a MEMS Vibratory Gyroscope

Roman Forke{1}, Alexey Shaporin{1}, Sebastian Weidlich{3}, Daniel Bülz{1}, Karla Hiller{2}, Harald Kuhn{2}

{1}Fraunhofer ENAS, Germany; {2}Fraunhofer ENAS and Technische Universität Chemnitz, Germany; {3}Technische Universität Chemnitz, Germany

9046: Improvement of Scale Factor Nonlinearity Over Temperature Variations by Real-Time Phase Compensation

Yunbin Kuang, Zhanqiang Hou, Gao Liu, Dingbang Xiao, Xuezhong Wu National University of Defense Technology, China

9066: Verifying IMU Suitability for Recognition of Freshwater Mussel Behaviors

William Jackson, Alan Marchiori, Stewart Thomas, Elizabeth Capaldi, Sean Reese Bucknell University, United States

9067: Study of IMU Mounting Position for ZUPT-Aided INS in the Case of Firefighter Crawling

Austin Parrish{1}, Chi-Shih Jao{2}, Danmeng Wang{1}, Andrei Shkel{1} {1}University of California Irvine, MicroSystems Lab – MEMS, United States; {2}University of California, Irvine, United States

9074: 780 nm narrow-Linewidth Laser by self-Injection Locking a low-Cost Fabry-Perot Laser to an Integrated Si3N4 145 Million Q Resonator

Andrei Isichenko, Nitesh Chauhan, Kaikai Liu, Mark Harrington, Daniel Blumenthal University of California, Santa Barbara, United States

9076: A Fast Start Method for Whole-Angle Micro-Shell Resonator Gyroscope Sheng Yu, Xuezhong Wu, Yongmeng Zhang, Jiangkun Sun, Dingbang Xiao National University of Defense Technology, China

9077: Non-Destructive Characterization of High Aspect-Ratio Structures Using 3D X-Ray Microscopy

Ester Lomeli Bentley, Sahana Prabhu, Sajal Singh, Jae Yoong Cho, Khalil Najafi University of Michigan, Ann Arbor, United States

18:00 - 18:20

Session: Fehlerkultur Room: Kona (Salon 1)

Session Chair(s): Doug Meyer, Northrop Grumman

18:00

9029: Bandwidth vs ZRO Stability Trade-Off in Lissajous Frequency Modulated MEMS Gyroscopes

Marco Bestetti{1}, Christian Padovani{1}, Andrea Bonfanti{1}, Giorgio Mussi{1}, Gabriele Gattere{2}, Giacomo Langfelder{1}

{1}Politecnico di Milano, Italy; {2}STMicroelectronics, Italy

18:20 - 18:45

Session: INERTIAL 2024 & Awards

Room: Kona (Salon 1)

Session Chair(s): Takashiro Tsukamoto, Tohoku University

Joan Giner, *Bosch Sensortec* Michael Larsen, *Northrop Grumman*

Kari Moran, Naval Information Warfare Center Pacific Ron Polcawich, U.S. Army Research Laboratory

18:45 – 20:45 **Banquet Luau** Room: Luau Gardens

Technical Program: Friday, 31 March 2023

07:30 - 08:35 **Registration**

Room: Kona (Salon 1)

07:30 – 08:30 **WiSe Breakfast** Room: Puna AB

08:35 - 09:15

Keynote: Narrow Linewidth Atomic Clock Transitions for Inertial Sensing and Fundamental Physics

Jason Hogan, Stanford University, USA

Room: Kona (Salon 1)

Session Chair(s): Susannah Jones, DSTL

09:15 - 10:15

Session: Final Session of Contributed Talks

Room: Kona (Salon 1)

Session Chair(s): Susannah Jones, DSTL

9:15

9059: UMEMS: A Robust Technology Platform for Quality Automotive Inertial Sensor Manufacturing

Lianjun Liu, Matthieu Lagouge, Bob Steimle, Aaron Geisberger, John McKillop, Dave Monk NXP Semiconductors, Canada; NXP Semiconductors, United States

9:35

9063: Out of Plane Double Differential Quadrature Compensation Electrodes with ThELMA-Double Technology

Patrick Fedeli, Luca Giuseppe Falorni, Gianfranco Javier Yallico Sanchez, Manuel Riani, Gabriele Gattere

9:55

INVITED: Photonic Integrated Circuits for Cavity Optomechanical Inertial Sensors: From the Classical to Quantum Regime

Dr Ying Lia Li (Lia) Zero Point Motion, UK

STMicroelectronics, Italy

10:15 - 10:40

Coffee Break/Exhibits

Room: Kauai Court

Technical Program: Friday, 31 March 2023

10:40 - 12:25

Session: Late News Room: Kona (Salon 1)

Session Chair(s): Jae Yoon Cho, Enertia

10:40

9090: Dual-Species Diamond NMR Gyroscope

Andrey Jarmola{3}, Sean Lourette{3}, Victor Acosta{4}, Glen Birdwell{1}, Peter Blul^mler{2}, Dmitry Budker{2}, Tony Ivanov{1}, Vladimir Malinovsky{1}

{1}DEVCOM Army Research Laboratory, United States; {2}Johannes Gutenberg-Universität Mainz, Germany; {3}University of California, Berkeley, United States; {4}University of New Mexico, United States

11.00

9086: Simulation of Anchor Loss in MEMS Resonators Using Perfectly Matched Layers

Daniel Schiwietz{2}, Laukik Rajnish More{1}, Eva Maria Weig{3}, Peter Degenfeld-Schonburg{1}

{1}Robert Bosch GmbH, Germany; {2}Robert Bosch GmbH and Technical University of Munich, Germany; {3}Technische UniversitĤt MĹ⁄₄nchen, Germany

11:20

9089: Gold Single-Axis Differential Capacitive MEMS Accelerometer with Proof-Mass Position Control Electrode Fabricated by Post-CMOS Technology

Akira Onishi, Kisuke Miyado, Devi Srujana Tenneti, Katsuyuki Machida, Parthojit Chakraborty, Masato Sone, Yoshihiro Miyake, Hiroyuki Ito Tokyo Institute of Technology, Japan

11.40

9088: Indirect Excitation of micro-HRG Using Segmented Piezoelectric ALD PHT Actuator

Danmeng Wang{2}, Nicholas Strnad{1}, Yusheng Wang{2}, Austin Parrish{2}, Robert Benoit{1}, Ryan R. Knight{1}, Andrei Shkel{2}

{1}DEVCOM Army Research Laboratory, United States; {2}University of California Irvine, MicroSystems Lab – MEMS, United States

12:00

9085: An Inverted Pendulum Model of Walking for Predicting Navigation Uncertainty of Pedestrian in Case of Foot-Mounted Inertial Sensors

Chi-Shih Jao{2}, Eudald Sangenis{2}, Paula Simo{2}, Alexandra Voloshina{2}, Andrei Shkel{1}

{1}University of California Irvine, MicroSystems Lab – MEMS, United States; {2}University of California, Irvine, United States

12:25 - 12:30

Closing Remarks

Room: Kona (Salon 1)

Session Chair(s): Michael Larsen. Northrop Grumman

Kari Moran, Naval Information Warfare Center Pacific

Program: Saturday, 1 April 2023

8:00 - 11:30

Beach Clean Up

Room: Royal Sonesta Lobby

Unlock what's possible.

NG

NORTHROP GRUMMAN

Join us: ngc.com/careers

©2023 Northrop Grumman is committed to hiring and retaining a diverse workforce. We are proud to be an Equal Opportunity/Affirmative Action Employer, making decisions without regard to race, color, religion, creed, sex, sexual orientation, gender identity, marital status, national origin, age, veteran status, disability, or any other protected class. U.S. Citizenship is required for most positions. For our complete EEO/AA and Pay Transparency statement, please visit www.northropgrumman.com/EEO.