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Abstract—The exponential growth of the Internet of things
(IoT) necessitates long-lasting, low-cost, and sustainable green
IoT network designs. In this paper, relay deployment is proposed
to increase the battery lifetime of IoT devices in smart homes.
Then, the effect of this deployment on the battery lifetime of IoT
sensors is analyzed and evaluated in large scales using tools from
stochastic geometry. Such analysis is more realistic as it captures
real-world spatial correlation of IoT devices and reveals better
insights to network design. Further, a closed-form expression of
the battery consumption model is presented, and its cumulative
density function is derived analytically. Numerical and analytic
results match and confirm that relay deployment is a promising
opportunity that can extend smart homes’ IoT battery lifetime
from about one year to several years.

Index Terms—IoT, sensor, relay, battery lifetime, Poisson
cluster process, stochastic geometry, green communications.

I. INTRODUCTION

The goal of fifth-generation (5G) wireless networks and
beyond is to realize connecting “anything, anyone, anytime,
anywhere” [1] reliably and energy-efficiently. With this am-
bition, 5G and beyond cellular networks face unprecedented
challenges in terms of required capacity, number of connec-
tions, and delay [2]. These are due to various applications
including mobile broadband, mission-critical services, and
massive Internet of Things (IoT), among others.

IoT devices and networks can be exploited to make human
life more convenient. Applications of IoT networks are in-
creasing in various fields such as healthcare, industry, smart
homes, energy, and transportation [3]. According to Statista
Research, the total number of IoT connected devices will
grow up to 75 billion worldwide by 2025 [4], and connec-
tion density is expected to be one million devices per km2

[2]. These devices will generate massive data and consume
significant energy. The economic growth of IoT would also
be in the range of $2.7 to $6.2 trillion [5]. However, efficient
exploitation of IoT networks needs frequent communication,
which in turn requires considerable energy. On the other
hand, IoT sensors commonly run on battery, and reducing the
energy consumption of billions of IoT sensors becomes a big
challenge, both economically and environmentally.

To address this problem, modeling and analysis of battery
lifetime in large-scale networks is a crucial step. Hence, many
researchers have studied the lifetime of IoT networks. In [6], a
basic energy consumption model for IoT battery is provided.

Lately, the battery lifetime with event generation model in
cellular networks is considered in [7]–[9]. Network lifetime is
analyzed based on stochastic geometry (SG) in [10].

A second step toward reducing the energy consumption of
IoT networks is to come up with solutions to increase the
battery lifetime of these devices. A big percentage of energy is
consumed during communication (transmitting packets). The
amount of energy used for communication depends on the
number of packets to be transmitted, the success probability of
transmission, and the distance between the device and access
point. One line of research is focused on reducing the number
of packets to be transmitted. Distributed source coding and
compressed sensing approaches [11], [12] are in this category.
Another line of research is concerned with improving coverage
and bringing access points closer to the devices such that less
energy is used for transmission.

However, there still exists a long way to improve energy
efficiency in reality, and IoT batteries can survive only several
months without charging [13]. Frequent replenishing energy
such as recharging and replacement for IoT devices seems not
a feasible solution in many applications. Numerous sustainable
methods such as optical wireless communication, duty-cycling
transceivers [14], and signaling flow optimization [15] have
been proposed to help IoT devices save energy and extend
battery lifetime.

In this paper, we propose relay deployment strategies for IoT
battery longevity and analyze it in large scales. Specifically, we
explore the effect of relay deployment in IoT battery lifetime
extension in large-scale networks in two different settings,
namely, the 3rd Generation Partnership Project (3GPP)-based
and SG-based cellular networks. The former is extensively
used for simulation by standardization groups, whereas the
latter gives a more realistic and tractable approach to get
insight into the network design [16]–[18].

The contributions of this paper are summarized as
• A rectangle cluster process (RCP) is defined to character-

ize the spatial coupling of indoor IoTs in smart homes.
This model better fits the footprints of homes in practice.

• Relay deployment strategies are proposed to extend IoT
battery lifetime in smart homes. The cases with one relay
per cell and one relay per smart home are considered.

• An expression for battery consumption of IoT sensors
based on event arrival pattern is formed and the cumula-
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Fig. 1: Graphical illustration of IoT networks with (a) Matérn
cluster process, (b) proposed rectangle cluster process in which
the number of IoT devices is Poisson distributed, and their
locations are uniformly distributed within a rectangle.

tive density function (CDF) of battery lifetime is derived
analytically and verified numerically.

• Path loss and battery lifetime performance of the 3GPP-
based and SG-based networks are compared using the
above baseline model and system-level simulations.

Our analysis and simulation show that with relay deploy-
ment, battery lifetime can be extended from one year to several
years because IoT sensors can send packets with less energy
with the aid of relay. This is as if we bring the access point
close to the sensors.

The remainder of the paper is organized as follows. Sec-
tion II presents the background and system model. Based
on the system model, the IoT lifetime probability model is
proposed in Section III. System-level simulations and perfor-
mance evaluation are shown in Section IV and Section V. The
conclusion is drawn in Section VI.

II. BACKGROUND AND SYSTEM MODEL

In this section, we discuss the large-scale network model
and describe the system model. First, a single-tier network
modeling the correlation between a smart home and IoT
sensors is introduced. To better describe the realistic spatial
correlation, a new cluster process called hard-core rectangle
cluster process is defined according to SG. Then, we generalize
it to multi-tier large-scale networks. In addition, we use
IEEE802.16j path loss model, which helps in analysis and
system-level simulation.

A. One-tier Spatial Network Model

We first introduce a single-tier network in which indoor
IoT devices are uniformly distributed around each smart home
within a radius. This network can be modeled as a stationary
and isotropic Matérn cluster process [17], [19]. However, a
rectangular boundary is better to characterize houses in actual
HetNet deployment [18]. We improve the definition by form-
ing a rectangle boundary to match an accurate deployment.

Definition 1 (Poisson cluster process (PCP) [17]): A PCP
Ψ(λp, f, pn) can be defined as

Ψ =
∪

z∈Φp

z+ Cz (1)

in which Φp is a stationary Poisson point process (PPP)
formed by parent points with density λp and Cz denotes off-
spring point process with respective to a cluster center z ∈ Φp

where random vector s ∈ Cz is scattered independently with
probability density function (PDF) f(s) around the cluster
center z. The number of points in Cz is a random vector N
with mean intensity pn (n ∈ N).

A hard-core Matérn cluster process (MCP) denoted as
Ψ(λp, f, λs) is realized when N follows a Poisson distribution
with density c̄, denoted by N ∼ Poisson(c̄), the offspring
points denoted by random vector s are uniformly distributed
within a disk of radius R around the parent points with the
density λs = c̄λp. Any two of the parent points have a
minimum distance re in between.

Definition 2 (Rectangle cluster process (RCP)): An RCP
Ψ(λp, f, λs) is defined uniquely when offspring points are
uniformly distributed within a rectangle with length L and
width M .

The PDFs of both RCP and MCP follow a uniform dis-
tribution but are defined in different coordinate systems. We
develop a rectangle boundary since it is a better approxima-
tion of houses footprint. Each home is a parent point z in
the network, which includes IoT sensors as offspring points
s ∈ Cz, where the domain C is a two-dimension rectangular
area. Rectangle hard-core process is defined in this case when
minimum distance re equals to

√
L2 +M2, and the PDF of

RCP in Cartesian coordinate is system represented as:

f(s) = f(x, y) =
1

LM
, (2)

in which x ∼ U(0, L) and y ∼ U(0,M).A realization of RCP
is shown in Fig. 1(b).

B. Multi-tier Networks

Consider a two-tier HetNet with base stations (BSs) and
relays modeled by SGs, as shown in Fig. 2(a). This is a more
realistic model than the 3GPP hexagonal grid cellular network
[20], illustrated in Fig. 2(b). In the 3GPP case, the location
of outdoor IoTs and smart homes are randomly generated
within which indoor IoTs are randomly scattered. This regular
model is not rich enough to capture actual spatial deployment
compared to SG-based networks, in which the distribution
of relays and outdoor IoTs follow PPP, and indoor IoTs as
the offspring points are distributed around their smart homes
following RCP.

C. Path Loss Model - IEEE802.16j Model

IEEE802.16j model was developed by IEEE802.16 relay
task group in 2007 to evaluate multi-hop relay system [21].
This evaluation methodology covers parameters and methods
related to the channel model, path loss model, performance
metrics, etc. It introduces nine categories of path loss models



for relay systems based on terrain type, location of transmitters
and receivers, and building distribution circumstances. We
apply Types C for outdoor-to-outdoor (O2O) cases which
includes BS to outdoor IoT, relay to outdoor IoT, BS to relay.
Type J is a non-line-of-sight (NLOS) path for outdoor-to-
indoor (O2I) case, such as BS to indoor IoT and relay to
indoor IoT.

The basic IEEE 802.16 path loss model for type C is
expressed as [21], [22]

PLC =


20 log(4πd/λc) for d ≤ d

′

0

A+ 10γ log(d/d0)

+∆PLf +∆PLht for d > d
′

0

(3)

where,

γ = a− bh1 + c/h1 (4a)
∆PLf = 6 log fc/2 (4b)

∆PLht =

{
−10 log(h2/3) for h2 ≤ 3m

−20 log(h2/3) for h2 > 3m
(4c)

A = 20 log(4πd
′

0/λc) (4d)

d
′

0 = d010
−

∆PLf+∆PLht
10γ (4e)

d is the distance between transmitter and receiver, λc =
c
fc

is
the wavelength in meter, c is the speed of light, fc is carrier
frequency, γ is path loss exponent, h1 is the height of the
BS/relay above rooftop antenna, a = 3.6, b = 0.005m−1,
c = 20m, d0 is set as 100 m, and h2 is the height of relay/IoT
bellow rooftop. The path loss of Type J is written as

PLJ = PLC +N (21, 8), (5)

in which N (21, 8) is a Gaussian distribution with mean 21dB
and standard deviation

√
8dB. With the path loss, we can

obtain the received signal power through the link budget [23].

III. BATTERY LIFETIME ANALYSIS IN LARGE SCALE
NETWORK

In this section, a mathematical model of battery lifetime
without considering the charging process is built, and the
probability of battery lifetime based on the spatial location
is derived. Battery internal resistance consumption and battery
discharge consumption are considered as the battery properties
and are taken into account in our study. In addition to the above
factors, IoT battery consumption via wireless communication
mainly depends on two patterns. One pattern is that sensors
are used for regular events, such as recording temperature, fire
and security alerts. Another pattern is due to emergent irregular
events and follows Poisson process. For example, fire sensors
will constantly inspect or sound when a microwave oven starts
working or density of smoke is high, and illuminating sensors
will be more brightened than the default if detecting someone
appears [24]. Both patterns require energy if IoT devices ask
for communication with the BS, which results from a high
transmission loss, especially for those smart homes far away
from the BS, while a relay can assist IoTs packet transmission
with little energy.

(a) SG-based cellular network

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
BS
Relay
Smart home
Indoor IoT
Outdoor IoT

(b) 3GPP-based cellular network

Fig. 2: The SG-based and 3GPP-based cellular networks.
Purple squares denote the BS, yellow dots denote relays, red
squares represent smart homes, red dots depict indoor IoTs,
and blue dots are outdoor IoTs.

The number of events generated (nk) by time t is an
independent and identically distributed Poisson process with
density λ. The probability that k events occur is [7],

P(nk = k) =
e−λt(λt)k

k!
. (6)

The remaining energy can be written as an iterative formula,

R(d+1) = R(d)(1− γ)− E
(d)
R − E

(d)
I −R

(d)
b , (7)

where γ ∈ [0, 1] is discharge rate [25], E
(d)
R is regular

event energy consumption at day d, E(d)
I is irregular events

energy dissipation, and R
(d)
b is battery internal resistance

consumption. Assume E is the initial battery capacity in mWh



and R(0) = E. To simplify the derivation, we set discharge
rate γ = 0. Then we have the recursive form of residual energy

R(d) = E −
d∑

m=1

E
(m)
R −

nk∑
n=1

E
(n)
I −R

(d)
b

= E −
d∑

m=1

P (m)T (m)
r nr −

nk∑
n=1

P (n)T
(n)
i −R

(d)
b

= E − dP (si)Trnr − nkP (si)Ti − dRb, (8)

in which Tr is dissipated duration per packet, nr is the number
of regular packet per day, P (si) is the uplink transmit power
for the IoT sensor si, where si ∈ Ψ, and Ti is the irregular
event duration. The lifetime T is achieved when R(T ) = 0, s
is the point set of stochastic geometry-based IoTs, scattered in
spatial domain. Then, the CDF of T given each IoT location
is derived as,

P(T ≥ τ |{P (si), si ∈ s})

=P
(
E − nkP (si)Ti −Ri(T )

Rb + P (si)Tr
≥ τ

)
=P

(
nk ≤ E − τ [Rb + P (si)Tr]

P (si)Ti

)
=

f(τ,si)−1∑
j=0

e−λτ (λτ)j

j!
(9)

in which

f(τ, si) =

⌊
E − τ [Rb + P (si)Tr]

P (si)Ti

⌋
, (10)

where ⌊·⌋ rounds a number to the next smaller integer. Here,
we can have the upper bound and lower bound of the system
when the transmit power is at the minimum threshold Pmin

and maximum threshold Pmax. The upper bound of the most
energy-saving system can be considered as an ideal case each
smart home is equipped with a relay, while the lower bound
is achieved when each IoT device needs to keep transmitting
at the maximum power to the BS, which is the most energy-
consuming case.

IV. SYSTEM-LEVEL SIMULATIONS

In this section, we verify the analytically driven CDF of
battery lifetime in (9) through simulations. Then, we charac-
terize the results of battery lifetime with and without relays in
large scale networks.

TABLE I: Parameters of battery lifetime model.

Notation Parameter description Value
E Battery initial capacity 1000 mWh
nr The number of regular packets 300 times per day
Tr Dissipated duration per packets 0.01s
Rb Internal resistance consumption 0.1 mWh
nk The amount of irregular data nk ∼ Poisson(λ)
λ Density of events 5 or 20
Ti Irregular duration 6min
P Sensors uplink transmit power 15dBm or 20dBm
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Fig. 3: CDF of indoor IoT battery lifetime in days.

A. Battery Lifetime Simulation

To verify the analytical results in (9), it is worth to note
that using cyclic superposition and multiplier is much easier
for factorial function because it may be too large for numerical
calculations. The simulation parameters are shown in Table I.
From Fig. 3, we can see that the derived expression for battery
lifetime and simulation results match very well. A small λ can
extend battery life. For example, when P = 20dBm and λ =
20, the battery lifetime is around 100 days compared with 25
days when λ = 5, as shown in Fig. 3. This is because reducing
the frequency of using batteries can save more energy. Besides,
less transmit power can also help to prolong battery life. The
system simulation is introduced next.

B. Path Loss Simulation

To understand the system-level performance, we consider
three sorts of network deployment, 1) BS only; 2) Relay in
each Voronoi cell; 3) Relay on the top of each smart home.
Each case will result in different path loss for IoT sensors.
The height of the BS, building, and IoT devices are 35m,
5m, and 1.5m, respectively. Carrier frequency fc is 7GHz.
Simulations are shown in Fig. 4, which demonstrates that the
shorter transmit distance, the less path loss.

C. Relay-aided Networks Simulation

We realize the system-level simulation for the 3GPP-based
and SG-based models. For each model, we study the three
cases mentioned in the path loss simulations above. The
parameters of the two networks are listed in Table II and are
basically equivalent. All the house is towards one direction,
no rotation in this case for simplification. λ is chosen to be 30
events per day. The CDFs of battery lifetime for the three
networks discussed above are shown in Fig. 5. The lower
bound is the case that each IoT sensor transmits at the fixed
maximum power. We can draw a conclusion from the results
that relay deployment can extend IoT battery lifetime from
about one year to almost ten years.
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Fig. 4: CDF of path loss.

V. PERFORMANCE EVALUATION AND ANALYSIS

We analyze the simulation results in this part. First of
all, the 3GPP-based network results in a lower path loss
compared to the SG-based case. The CDF of path loss usually
has a large range in the SG-based network than that of the
3GPP-based network, which means variance is larger. This is
because the SG brings in the randomness to the deployment.
Deployment of BSs, relays, and IoT sensors cannot always
follow a regular grid; many unpredictable issues such as
terrain, original building, forest, and wetland can affect it. The
SG-based path loss is closer to reality, see Fig. 2 in [18] and
[26], and the 3GPP-based network with less loss is closer to
ideal performance.

Besides, the path loss of the case when the relay is installed
in each smart home is much lower compared to the case
where a public relay installed in each cell or the case without
relay, and they are almost the same for both networks. This is
because indoor IoTs can communicate with the relay in each
smart home directly instead of transmitting to outdoor BS or
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Fig. 5: CDF of battery lifetime.

relay outside somewhere. Thus, the path loss gets lower and
will not be affected by long-distance transmission.

For the battery lifetime, relay deployment can increase
longevity for both networks, especially the case of relay in
each smart home. In the SG-based network, 99% IoT batteries
is improved by relay from nearly 15 months to 38 months.
90% of IoT batteries can be extended from one year to seven
and a half years. While in the 3GPP-based network, 99% IoT
batteries can be extended by relay from about 19 months to 63
months. 90% of IoT batteries can be prolonged from five years
to eight and a half years. The relay in smart home deployment
for both cases nearly reaches the upper bound in which 99%
of the batteries are still alive after nine years. The SG-based
network is more convincing because the design and structure
are more accurate compared to the cellular network [16], [17].

It is worth pointing out that the battery lifetime converges
to a point finally because of the discharge rate and daily
consumption. Many parameters also influence longevity; for
example, the number of regular and irregular events and their
corresponding duration. The fewer packets, the shorter the



duration, and the longer the battery can live.
By increasing the scale of the network, the transition from

city to suburban area is realized, while the trend of the results
is nearly unchanged. A suburban area is usually covered
by a large amount of vegetation. BSs and homes are more
unplanned in which SG fits better. Due to a smaller density of
people and BSs, sometimes the quality of communication is
poor. With relay deployment strategies, people can have better
communication.

TABLE II: Parameters of large scale networks.

3GPP-based Network
Radius of each cell 0.3km
Intersite distance (ISD) 0.5196km
Number of wrap-around cells 57
Average number of IoT devices per cell 100
Average number of buildings per cell 4
Percentage of indoor IoT devices 80%

SG-based Networks
The area of square 4.4427 km2

The intensity of the BS λb 4.2767/km2

The intensity of relay λr 12.83/km2

The intensity of smart home λhome 51.32/km2

The intensity of indoor IoT λin 20 per home
The intensity of outdoor IoT λout 256.6/km2

Battery Lifetime Parameters
The area of each building 30m× 30m
Maximum transmit power Pmax 10dBm
Battery initial capacity 3V × 1000mAh
Irregular events duration Ti 60s
Discharge rate γ 0.001
Receiver antenna sensitivity for BS −114dBm [23]
Antenna gain of IoT −1dB [27]

VI. CONCLUSION

We have proposed two relay-aided strategies for IoT battery
lifetime enhancement in smart homes. An SG-based RCP
model has been defined for modeling the smart home and
indoor IoTs correlation in large scales. System-level simu-
lations verify that relay deployment, especially having one
relay in each smart home can significantly extend the battery
lifetime of IoT devices in smart homes. In our future work,
we will apply non-orthogonal multiple access to ensure access
to all IoT devices in high-density deployments, and improve
the security of communication in the physical layer.

.
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