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Abstract—Millimeter wave (mmWave) wideband channels in
a multiple-input multiple-output (MIMO) transmission are de-
scribed by a sparse set of impulse responses in the angle-delay, or
space-time (ST), domain. In this paper we consider the problem
of channel estimation and we discuss subspace methods which
exploit the low-rank (LR) algebraic structure of the MIMO
channel matrix and the related slowly- and fast-varying features
(angles/delays of arrival and fading amplitudes, respectively). The
main drawback of the optimal LR method is the excessively
slow convergence to the mean square error lower bound for
invariant angles/delay and time-varying fading. In this paper, new
suboptimal LR techniques are proposed to reduce the complexity
and accelerate the convergence. Numerical results show that the
proposed methods closely approach the asymptotic bound with
a number of slots that is two order of magnitudes lower than
the optimal method, providing significant performance gains in
realistic mmWave propagation scenarios.

Index Terms—Channel estimation, low-rank subspace meth-
ods, mmWave, multiple-input-multiple-output (MIMO).

I. INTRODUCTION

The escalating capacity demand of the fifth generation
(5G) radio access networks has moved the research focus
towards millimeter wave (mmWave) communications [1]–[4].
Unfortunately, the large spectral availability comes at the price
of severe propagation losses and the use of large antenna arrays
with sharp beamforming becomes mandatory to guarantee the
coverage, leading to massive multiple-input multiple-output
(MIMO) systems. Due to their sparse wideband structure, with
few dominant paths typically clustered around the line-of-
sight (LOS), multipath MIMO channels are described by a
parsimonious set of parameters in the space-time (ST) domain,
i.e. the domain of angles (of departure and arrival) and delays.

Training-based channel estimation and processing in
mmWave MIMO involve several aspects that depend on the
system configurations (see [4] for an overview) but all methods
exploit the channel sparsity. In low-rank (LR) methods the
sparsity is converted into a LR structure of the MIMO channel
matrices, so that powerful algebraic methods can be applied,
regardless of array configurations and calibration errors [5].

The complexity of transceivers can be reduced by hybrid
analog/digital structures and specific solutions for mmWave
channel estimation have been proposed for static environments
[6]–[11]. However, mmWave environments are typically dy-
namic (at least for the fading fluctuations), and this is the
context approached in this paper for MIMO channel estima-
tion. The mmWave radio access has a fixed array unit with
moving connected terminals. Movement of terminals is such
that the ST features (angles of arrival/departure and delays) of

the mmWave MIMO channel remain constant for several (say
L) temporal intervals organized in time-slots. This invariance
depends on the ST resolution of the MIMO system. Consider
e.g. a vehicular LOS link with relative speed of 50 km/h and
transmission frame of 1 ms (see [12] and [13]): angles and
delays can be approximated as invariant for L = 108 slots
when the link distance is 200 m, the antenna array resolution
1 deg and the bandwidth 200 MHz [14], [15].

This paper proposes to exploit the invariance of an-
gles/delays and the related ST channel subspaces in mmWave
MIMO orthogonal frequency division multiplexing (OFDM)
systems. In this context, the LR methods [14], [16] can be
straightforwardly extended. However a main drawback is the
excessively slow convergence of the optimal method [16]
that requires L � 1000 slots and contrasts with both the
mmWave channel dynamics and the latency requirements (both
calling for L < 100 slots). The main contribution of this
paper with respect to the preliminary works [5], [14], [16],
is that here the LR channel estimator is i) accelerated at the
expenses of some sub-optimality and ii) tailored to mmWave
MIMO-OFDM systems with realistic channel modeling. The
proposed LR methods are sub-optimal but fast-converging, and
with far lower complexity. The performances are evaluated
in both simplified and realistic propagation scenarios, and
compared with asymptotic lower bounds obtained as detailed
in [17] by extending to MIMO-OFDM systems the bound in
[5]. Numerical results show that the LR techniques closely
approach the performance of the optimal method [16] with
a number of slots two order of magnitudes lower, providing
significant gains with respect to other LR methods in the
literature.

II. SYSTEM MODEL

We consider a mmWave MIMO OFDM system with NT

transmitting and NR receiving antennas. The total number of
OFDM subcarriers is denoted as Ktot, while K is the number
of pilot subcarriers for channel estimation. X

(nT)
` ∈ CK×1

is the vector containing the pilot symbols transmitted over
the K subcarriers from antenna nT = 1, . . . , NT, within the
OFDM block ` = 1, . . . , L, with index ` running over the
blocks containing pilots (i.e., the training blocks). The cyclic
prefix (CP) comprises W − 1 samples, where W denotes the
maximum temporal support of the channel, with K ≥WNT.

At the receiver, after CP removal and computation of
the Ktot-point discrete Fourier transform (DFT), the K × 1
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complex baseband signal received by the nR-th antenna during
the `-th block is:

Y
(nR)
` =

∑NT

nT=1
diag

(
X

(nT)
`

)
H

(nR,nT)
` + N

(nR)
` , (1)

where H
(nR,nT)
` = Fh

(nR,nT)
` ∈ CK×1 is the channel

for the link (nR, nT) in the frequency domain, obtained as
the DFT of the corresponding W × 1 time-domain channel
h
(nR,nT)
` = [h

(nR,nT)
` (1) · · ·h(nR,nT)

` (W )]T. The DFT matrix
has entries [F]k,w = exp(−j2πfkw/Ktot)/

√
Ktot, with fk

denoting the frequency index of the k-th pilot subcarrier,
k = 0, . . . ,K − 1, and w = 1, . . . ,W . The w-th tap of
the ST MIMO channel for the `-th training block is denoted
as h`(w) ∈ CNR×NT , with [h`(w)]nR,nT

= h
(nR,nT)
` (w).

The additive Gaussian noise-plus-interference signal N
(nR)
` ∈

CK×1 is assumed to be uncorrelated over the frequencies,
i.e., E[N

(nR)
` N

(nR)H
` ] = Kσ2

nIK , and spatially correlated due
to the geometrical distribution of the interferers. By stacking
column-wise the noise vectors into N` = [N

(1)
` · · ·N

(NR)
` ], the

noise-plus-interference spatial covariance is Q = 1
KE[NH

` N`],
which is to be estimated as the arrangement of the interferers
is unknown in general.

A. MmWave Space-Time Channel

The mmWave channel is modelled as [18], [19]:

h` (w) =
∑P

p=1
αp,`A (θp) g ((w − 1)T − τp) , (2)

where each path p has fading amplitude αp,` and delay τp,
while g(·) is the delayed impulse response of the cascade be-
tween the transmitter (TX) and receiver (RX) filters, sampled
at symbol rate 1/T . The matrix

A (θp) = aRX(θRX
p )aTX(θTX

p )T (3)

accounts for the RX and TX antenna array responses,
aRX(θRX

p ) and aTX(θTX
p ). These responses depend on the

azimuth (φ) and elevation (ψ) angles, for the arrival θRX
p =

[φRX
p , ψRX

p ] and the departure, θTX
p = [φTX

p , ψTX
p ]. Fast varying

fading amplitudes αp,` are block-dependent, while delays τp
and angles θp = [θTX

p ,θRX
p ] are assumed to be constant within

L blocks.
The overall ST MIMO channel at block ` is arranged for

analytical convenience into the NRNT ×W matrix

H` = [vec (h` (1)) · · · vec (h` (W ))] = A (θ)D`G(τ)T, (4)

where the NRNT × P complex matrix A (θ) =
[a(θ1) · · ·a(θP )] and the W × P real matrix G(τ) =
[g(τ1) · · ·g(τP )] collect all the static ST channel components
associated to the P paths, with a(θp) = vec(A(θp)) and
g(τp) = [g(−τp) · · · g((W − 1)T − τp)]

T. The fading
amplitudes D` = diag(α1,`, . . . , αP,`) ∈ CP×P are assumed
to follow the wide-sense stationary uncorrelated scattering
(WSSUS) model, and to be uncorrelated over blocks:

E
[
D`+mDH

`

]
= Ωδ (m) , (5)

where Ω = diag(Ω1, . . . ,ΩP ) and Ωp > 0 is the average
power of the p-th path, normalized to have

∑P
p=1 Ωp = 1.

TABLE I: Channel Estimate Arrangements
Notation Sample Ordering Dimensions
ĥ` Time, Space TX, Space RX WNTNR × 1
ĥ`(w) Space RX, Space TX NR ×NT

Ĥ` Space RX, Space TX, Time NRNT ×W
ĥ` Space RX, Space TX, Time NRNTW × 1

B. Pre-processing for ST Channel Estimation

Model (1) is rearranged to isolate the temporal channel
responses as:

Y
(nR)
` = B`h

(nR)
` + N

(nR)
` , (6)

where the K × WNT matrix B` =
[diag(X

(1)
` )F · · · diag(X

(NT)
` )F] collects the NT

training matrices, and the WNT × 1 vector
h
(nR)
` = [h

(nR,1)T
` · · ·h(nR,NT)T

` ]T the NT channel impulse
responses. The conventional approach for the estimation of
h
(nR)
` from (6) is the unconstrained maximum likelihood

(ML) estimate, here referred to as full rank (FR) method:

ĥ
(nR)
` = B†`Y

(nR)
` = h

(nR)
` + B†`N

(nR)
` , (7)

with B†` = (BH
` B`)

−1BH
` . This estimate is known to be

unbiased with variance minimized by adopting equally spaced,
equally powered, and orthogonal pilot sequences X

(nT)
` with

correlation matrix RBB = BH
` B` = Kσ2

xINTW [20]. The
noise spatial covariance estimate is obtained as:

Q̂ =
1

KL

∑L

`=1
N̂H
` N̂`, (8)

from the residual signals N̂
(nR)
` = Y

(nR)
` − B`ĥ

(nR)
` aggre-

gated over the antennas into N̂` = [N̂
(1)
` · · · N̂

(NR)
` ].

Throughout the paper, we will use different rearrangements
of the channel estimate as summarized in Table I. More
specifically, being ĥ

(nR,nT)
` (w) = [ĥ

(nR)
` ](nT−1)W+w the w-

th tap for link (nR,nT), we denote as ĥ` (w) the NR × NT

matrix collecting the w-th taps for the NRNT MIMO links
and as Ĥ` the whole NRNT ×W doubly-space time matrix
aggregating all taps, according to the channel arrangements in
(2) and (4). The following equivalences hold:

ĥ
(nR,nT)
` (w) =

[
ĥ` (w)

]
nR,nT

=
[
Ĥ`
]
(nT−1)NR+nR,w

. (9)

To conclude, we define the vector collecting all the estimate
samples over, respectively, time, the TX space and the RX
space domains as ĥ` = [ĥ

(1)T
` · · · ĥ(NR)T

` ]T ∈ CWNTNR×1,
with covariance C = cov[ĥ`] = Q⊗R−1BB. We will also use a
permutation of this vector where the ordering is, respectively,
according to the RX space, TX space and time domains as
ĥ` = vec(Ĥ`) ∈ CNRNTW×1, with covariance C = cov[ĥ`].

III. LOW-RANK CHANNEL ESTIMATION

The mmWave MIMO wireless channel is sparse and the
conventional estimate (7) is extremely noisy, especially in
massive ST settings. To reduce the errors we propose to
exploit the invariance of the directions of arrival/departure



TABLE II: Channel Sample Correlations
Correlation R̃ Rank r Dim.
R̃ST = 1

L

∑̀
h̃`h̃

H

` r = rank(O) NRNTW

R̃S = 1
L

∑̀
H̃`H̃H

` rS = rank(A) NRNT

R̃T = 1
L

∑̀
H̃H

` H̃` rT = rank(G) W

R̃S,TX = 1
L

∑̀
,w

h̃H
` (w)h̃`(w) rS,TX = rank(ATX) NT

R̃S,RX = 1
L

∑̀
,w

h̃`(w)h̃H
` (w) rS,RX = rank(ARX) NR

(DOA/DOD) and the delays of the propagation paths, to enable
the identification of the LR algebraic structure of the multipath
channel: rather than estimating DOD/DOA and delays based
on a parametric model, the proposed LR methods describe
the multipath components in terms of ST-invariant subspaces
and estimate the channel by filtering the FR estimate through
a set of ST projections. In this way, they avoid a joint
angle and delay estimation which is computationally expensive
and highly sensitive to antenna calibration. The LR channel
modeling and the estimators are detailed in the following.

A. LR Algebraic Channel Structure

To highlight the relevant parameters and isolate the slowly-
varying ones from the fast-varying terms, we consider the
vectorized ST channel h` = vec (H`) ∈ CNRNTW×1:

h` =
∑P

p=1
(g (τp)⊗ a (θp))︸ ︷︷ ︸

op

αp,` = O (τ ,θ)α`, (10)

where O (τ ,θ) = [o1 · · ·oP ] ∈ CNRNTW×P collects the
block-invariant ST signatures of the P paths (depending on
angles and delays), while α` = [α1,` · · ·αP,`]T ∈ CP×1
embeds the block-varying amplitudes. According to the WS-
SUS assumption, we define the ST channel correlation matrix
RST = E[h`h

H
` ] ∈ CNRNTW×NRNTW , and we denote with

r = rank (O (τ ,θ)) ≤ min (NRNTW,P ) (11)

the number of resolvable paths given the system resolution
(i.e., the antenna array aperture and the system bandwidth).
Based on the LR constraint (11), we can rewrite the channel
(10) according to the joint space-time (JST) LR model [16]

h` = USTγ`, (12)

where UST ∈ CNRNTW×r is a block-independent full-rank
matrix that collects the r eigenvectors of RST and spans the
invariant ST subspace R(UST) = R(O(τ ,θ)), while γ` ∈
Cr×1 contains the related block-dependent weights.

B. LR Estimation Methods

The LR JST algorithm [16] performs the ML estimation of
the ST MIMO channel from (6) under the LR constraint (12).
The estimate, for known rank order r, is obtained as

ĥLR,` = Ĉ
H
2 Π̂JSTĈ

−H
2 h` = Ĉ

H
2 Π̂JSTh̃`, (13)

TABLE III: LR Channel Algorithms
Method Correlation R̃ Projector Π̂ = Πr(R̃)
JST R̃ST Π̂JST

DST R̃∗T ⊗ R̃S Π̂∗T ⊗ Π̂S

SST R̃∗T ⊗ R̃∗S,TX ⊗ R̃S,RX Π̂∗T ⊗ Π̂∗S,TX ⊗ Π̂S,RX

LL-JST R̃∗T ⊗ R̃∗S,TX ⊗ R̃S,RX ŨSSTΠ̂LLJSTŨH
SST

by projecting the pre-whitened FR estimate h̃` = Ĉ
−H/2

ĥ`
onto the subspace spanned by the r leading vectors ŨJST =
eigr[R̃ST] of the sample correlation matrix R̃ST defined
in Table II, through the projector Π̂JST = Πr(R̃ST) =
ŨJSTŨH

JST.
The computational cost of JST depends on the eigen-

decomposition (EVD) of R̃ST which becomes unfeasible
for practical (latency-constrained) mmWave systems as the
correlation matrix is NRNTW ×NRNTW and the number of
blocks required for its estimation is L� NRNTW [14]. In the
following, this problem is addressed by proposing suboptimal
methods that reduce the computational burden by decoupling
the ST subspace into orthogonal domains of lower dimensions
and by exploiting cascade filtering approaches. All methods
are summarized in Table III.

1) Doubly-Space Time Estimator (DST): The DST method
[14] assumes a separable ST structure for the channel cor-
relation R̃ST, as reported in Table III (second row). This as-
sumption simplifies the projector into Π̂DST = Π̂∗T⊗Π̂S with
Π̂T = ΠrT(R̃T) and Π̂S = ΠrS(R̃S). The spatial and tem-
poral sample correlation matrices, R̃S and R̃T respectively,
as well as the rank orders, rS and rT, are defined in Table II,
where H̃` = vec−1(h̃`) is the whitened FR channel estimate
rearranged into a matrix of dimensions NRNT×W (see Table
I). The rank orders represent the number of resolvable angles
(rS) and delays (rT). This approach simplifies the computation
to the EVD of two separate correlation matrices of lower
dimensions compared to JST, i.e. NRNT×NRNT and W×W .

2) Separate-Space Time (SST) Estimator: A novel method
herein proposed to further reduce the complexity as well as
the latency is based on the extension of the separable structure
assumption to the spatial MIMO correlation R̃S as detailed
in Table III (third row), according to the MIMO Kronecker
model [21]. This simplifies the projector into Π̂SST = Π̂∗T ⊗
Π̂∗S,TX⊗Π̂S,RX with Π̂S,RX = ΠrS,RX

(R̃S,RX) and Π̂S,TX =

ΠrS,TX(R̃S,TX) . The spatial correlations at the two sides of
the MIMO link, R̃S,RX and R̃S,TX, are defined in Table II,
together with the spatial ranks, rS,RX and rS,TX. The latters
represent the number of angles that can be resolved by the
TX and RX array, respectively. The NR ×NT matrix h̃` (w)
is the whitened estimate of the MIMO channel for the w-
th tap extracted from H̃` according to (9). Notice that the
projector computation reduces to the EVD of three matrices
of dimentions NR × NR, NT × NT and W ×W , and thus
requires L� NRNTW .

3) Low-latency Low-complexity JST (LL-JST) Estimator:
As shown in Sec. IV, the assumption of separable domains



of the DST and SST methods speeds up the convergence
but limits the asymptotic performance of the LR estimator.
For L → ∞, in fact, the projection captures a subspace that
includes the channel multipath components but also the noise
laying in the intersections of the separate RX-TX space and
time domains, as illustrated in Section III-B4. This leads to
a higher error at convergence compared to JST. To guarantee
both low latency/complexity and convergence to the optimal
JST performance, we propose a new method that exploits the
basis computed by the SST algorithm

ŨSST = Ũ∗T ⊗ Ũ∗S,TX ⊗ ŨS,RX, (14)

to perform a further LR filtering in the subspace identi-
fied by SST. In (14) we set ŨT = eigrT [R̃T], ŨS,TX =

eigrS,RX

˜[RS,RX], and ŨS,TX = eigrS,TX

˜[RS,TX]. We consider
the rS,RXrS,TXrT × 1 projection of the FR channel estimate
onto this basis:

ŝSST,` = ŨH
SSTh̃` = s` + nSST,`, (15)

which is the sum of the channel-related component s` =

ŨH
SSTC

−H
2 h` and the projected FR estimate error nSST,` =

ŨH
SSTC

−H
24h`, with 4h` = ĥ`−h`. Note that for L→∞

it is R(ŨSST) ⊇ R(ŨJST), as it is Ĉ → C and the estimated
bases tend to the true channel bases in the selected domain, e.g.
ŨJST → C−

H
2 UST. Thereby the rank-r channel is entirely

embedded in s` while the residual nSST,` is white and includes
both the component laying in the channel subspace R(ŨJST)
(which can no longer be removed) and the artifacts laying
in the orthogonal subspace R(ŨSST) \R(ŨJST) captured by
the intersections of the three separate domains due to the SST
Kronecker approximation. In order to remove these artifacts,
we propose to apply the optimal JST approach to the rank-
r signal ŝSST,` and therein identify the long-term channel
subspace. The sample correlation:

R̂s =
1

L

L∑
`=1

ŝSST,`ŝ
H
SST,`, (16)

isolates the truly invariant channel structure, thus the subspace
projector is Π̂LLJST = Πr(R̂s) and the LL-JST estimate is:

ĥLR,` = Ĉ
H
2 ŨSSTΠ̂LLJSTŝSST,`. (17)

4) An illustrating example: The difference between the
proposed LR methods is explained by an example focusing
on the spatial structure only to ease the visualization. We
consider a multipath channel composed of P = 4 resolvable
paths described by 3 DOA ψRX

p = {π/3, π/2, 2π/3} and 3
DOD, ψTX

p = {π/3, π/2, 2π/3} such that 2 paths share the
same DOA and 2 paths share the same DOD. This reduces the
spatial diversity orders to rS,TX = rS,RX = 3 and rS = 4. The
spatial structure of the channel is represented by plotting the
power-angle-angle (PAA) diagram, assuming vertical arrays
with NR = NT = 16.

Fig. 1 shows the PAA diagrams of (a) the channel, (b) the
FR estimate, while (c) and (d) represent the LR projection

Fig. 1: PAA diagrams for different estimates of a MIMO multipath channel
with degrees of spatial diversity rS,TX = rS,RX = 3 and rS = 4.

over the TX and RX domain, respectively. The Kronecker
combination of the two filters by the SST method is in Fig. 1
(e) for optimal rank selection. Comparing Fig. 1 (a) and (e), it
can be seen that the assumption of separable spatial structure
leads to the selection of the PAA entries corresponding to
rS,TXrS,RX combinations of channel’s DOA/DOD, introduc-
ing noise artifacts. On the other hand, the LL-JST method in
Fig. 1 (f) is able to filter out these artifacts selecting only
the channel components, reaching the same results of the JST
approach, but with lower latency.

IV. NUMERICAL RESULTS

In this section we assess the (normalized) mean squared
error (MSE) of the proposed estimation methods, i.e., MSE =

E[|∆h`|2]/E[|h`|2], where h` = [h
(1)
` · · ·h

(NR)
` ] and ∆h` =

hEST,` − h`, with hEST,` denoting the generic WNT × NR

estimated channel. In order to evaluate the performance against
both interference and noise, the MSE is given as a func-
tion of the signal to noise and interference ratio SINR =
E[|h`|2]/E[|N̂`|2] evaluated at the output of the FR estimator,
i.e. on signal (7), assuming optimal pilot sequences with
diagonal RBB. The noise covariance is modeled as Q =
σ2
nINR

+ QI, where the two terms represent the RX noise
and the interferers’ contribution, respectively. We model the
interferers as single rays impinging the RX array, thus

QI =
∑NI

i=1
ΩI,iσ

2
I,ia

RX(θRX
I,i )aRX(θRX

I,i )H, (18)

where NI is the total number of interferers, while σ2
I,i, ΩI,i,

and θRX
I,i represent the single interferer’s transmitted power,

path gain, and DOA, respectively. The signal to noise ratio
(SNR) is the SINR in the absence of interference. We calculate
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Fig. 2: MSE vs. L (left) and SNR (right) for LR channel estimation algorithms
over a simplified non-line-of-sight (NLOS) channel with white noise.

the lower bounds to the performance for each proposed method
by extending the analysis in [5] from single-input-multiple-
output (SIMO) to MIMO settings as detailed in [17]. We eval-
uate the algorithms’ convergence rate by computing the MSE
versus the number of slots L used for the estimation of the
channel subspaces. The channel rank orders are estimated by
means of the minimum description length (MDL) algorithm,
as in [14].

The MIMO-OFDM system consists of two vertical uniform
linear array (ULA)s, with NR = 16 and NT = 16 antenna
elements and inter-element spacing d = λ

2 , representing one
line of a 16×16 planar array. Both the TX and RX devices use
polarized antenna elements with polarization angles of −45◦

and 45◦ for each array, respectively, and antenna gains as
specified in Section 7.3 of [3]. The bandwidth is 100 MHz and
the cascade of the TX and RX filters is a raised cosine with
roll-off factor 0.2. The time-slot is 1 ms. The performance is
over two different channels: simplified deterministic channels
and 3GPP stochastic channels for urban macro cell (UMa)
environment [3]. Note that all results are consistent with the
array size (NR,NT), and with the equivalent digital channel
in case of hybrid analog/digital transceivers.

We first analyze the algorithms’ performance on
a simplified channel of 4 paths, in both LOS and
NLOS conditions, with elevation angles

(
ψRX
p , ψTX

p

)
=

{(115.2, 64.8), (145.2, 94.8), (85.2, 94.8), (85.2, 34.8)} deg,
for p = 1, . . . , 4, respectively. With this choice, the spatial
rank orders are: rS,RX = 3, rS,TX = 3, rS = 4. Path delays
are set as τp = (p − 1)T , p = 1, . . . , 4. Sampling is at
symbol rate 1/T , therefore the temporal rank is rT = 4,
while W = 10. Normalized path powers are compatible with
the distributions for the UMa channels in [3], including the
antenna gains and the per-cluster shadowing, and are set
as ΩNLOS = [0.319, 0.272, 0.227, 0.182] for the simplified
NLOS scenario, and ΩLOS = [0.924, 0.030, 0.025, 0.021] for
LOS one.

Fig. 2 (left) shows the LR algorithms’ MSE performance
against L for SNR = 0 dB over the simplified NLOS channel,
without interferers. All algorithms attain the corresponding
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Fig. 3: MSE vs. L (left) and SINR (right) for LR channel estimation
algorithms over simplified LOS channel with spatially correlated noise.

lower bound, leading to a better estimation performance than
the conventional unconstrained FR estimator. However, the
four estimators converge at different rates: a larger number of
slots is required by the JST method, due to the higher number
of channel parameters to be estimated in the joint ST domain.
The LL-JST outperforms all the other LR algorithms for
L > 4, while for lower values, it is interestingly upperbounded
by the SST algorithm. Within L = 100 slots, LL-JST has a
MSE 2 dB higher than the asymptotic bound. Moreover, we
observe that, despite of the lower asymptotic performances, the
DST does not outperform the SST algorithm before L = 50
slots, while JST needs L = 300 and L = 800 slots to
outperform the SST and DST algorithms, respectively, which
can be critical for mmWave channels.

Fig. 2 (right) reports the MSE vs. SNR. All of the LR
estimators provide a consistent gain with respect to the FR
estimation, peaking at 26 dB with the LL-JST algorithm for
most of the SNR values. Similarly as in the previous case,
the LL-JST algorithm is upperbounded by the SST algorithm
where the ratio between observations and noise becomes
unfavorable, in this case SNR < −10 dB.

Fig. 3 shows the MSE of LR algorithms over the simplified
LOS channel, assuming the presence of 3 equally-powered
interferers paths impinging the RX array, so that one interferer
path is superimposed to one channel path, i.e., it has the same
DOA as the channel’s path, while the other interferers and
channel’s paths do not share the same DOAs. Q is assumed
to be known. The performance against L is evaluated for
SINR = 0 dB. With respect to Fig. 2, we observe lower
asymptotic bounds, as most of the interference is concentrated
within directions that are well separated from the channel’s
DOAs. Since the convergence rate is similar, we observe that it
takes more slots for all the algorithms to reach the convergence
and within L = 100, only the SST is at 3 dB from its
lower bound, while reaching the JST bound is possible within
L = 1000 slots only for the LL-JST algorithm.

We now show the performance of the proposed estima-
tion algorithms over the 3GPP stochastic channels, generated
according to [3] assuming a UMa propagation environment,
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Fig. 4: MSE vs. L (left) and SNR (right) for LR channel estimation algorithms
over 3GPP UMa-LOS channel with white noise.

white noise, and the worst-case synchronization error, with the
first arrival placed between two sampling instants (τ1 = 5.5T ).
Fig. 4 reports the MSE performance. As for the simplified
scenarios, all LR algorithms have a significant gain with
respect the FR estimator, but faster rate of convergence due to
the LR nature of the channel, despite the numerous clusters
and rays. However, due to the fact the estimated ranks are
very low, the LL-JST algorithm does not provide a significant
gain with respect to the SST algorithm, and both reach gains
of almost 25 dB with respect to the FR estimator. Within
L = 100, only at SNR = {15, 20} it can be observed a slight
gain between the two algorithms.

V. CONCLUSIONS

We have proposed a set of new computationally efficient
LR estimation methods that take into account of the mmWave
peculiarities. Estimated channel covariances over a few trans-
mission periods are exploited to improve existing techniques
for dynamic mmWave MIMO systems. Numerical results on
both simple and well-established 3GPP models show the merit
of the proposed solutions, providing remarkable gains up to
37 dB over the FR channel estimate, and gains from 5 to 25 dB
over existing LR solutions, within 100 slots. Furthermore, the
performances are compared to asymptotic MSE lower bounds
for invariant angles/delays and time-varying fading, showing
that the proposed LR methods attain the analytical bounds. In
summary, the proposed LR method i) attains the asymptotic
MSE bound within tens to hundred of training slots, and ii) is
independent on the array calibration.
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